mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 13:30:35 +00:00
llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch
* convert : fix n_ff typo
* llama : model loading
* ggml : sync latest ggml_mul_mat_id
* llama : update graph to support MoE
* llama : fix cur -> cur_expert
* llama : first working version
* llama : fix expert weighting in the FFN
* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)
* ggml : add n_as argument to ggml_mul_mat_id
* ggml : fix ggml_get_rows to take into account ne02 / ne11
* metal : add more general support for ggml_get_rows + tests
* llama : add basic support for offloading moe with CUDA
* metal : add/mul/div use general kernel when src1 not cont
* metal : reduce the kernel launches for ggml_mul_mat_id
* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D
* ggml : update get_rows f16 and q
* cuda : support non-contiguous src1 in get_rows
* llama : offload missing ffn_moe_silu
* metal : fix ggml_get_rows to work with non-cont src1
* metal : add indirect mat-vec kernels for all quantization types
* llama : do not quantize expert gating tensors
* llama : add n_expert and n_expert_used to hparams + change quants
* test-backend-ops : add moe test
* cuda : fix get_rows when ncols is odd
* convert : determine n_ctx correctly
* metal : fix ggml_mul_mat_id for F32
* test-backend-ops : make experts more evenly probable (test_moe)
* test-backend-ops : cleanup, add moe test for batches
* test-backend-ops : add cpy from f32 -> all types test
* test-backend-ops : fix dequantize block offset
* llama : fix hard-coded number of experts
* test-backend-ops : simplify and disable slow tests to avoid CI timeout
* test-backend-ops : disable MOE test with thread sanitizer
* cuda : fix mul_mat_id with multi gpu
* convert : use 1e6 rope_freq_base for mixtral
* convert : fix style
* convert : support safetensors format
* gguf-py : bump version
* metal : add cpy f16 -> f32 kernel
* metal : fix binary ops for ne10 % 4 != 0
* test-backend-ops : add one more sum_rows test
* ggml : do not use BLAS with ggml_mul_mat_id
* convert-hf : support for mixtral-instruct (#4428)
* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct
* convert : use sentencepiece tokenizer for Mixtral-instruct
* convert : make flake8 happy
* metal : fix soft_max kernels
ref: 1914017863
* metal : limit kernels to not use more than the allowed threads
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
This commit is contained in:
parent
fecac45658
commit
799a1cb13b
5
Makefile
5
Makefile
@ -399,6 +399,11 @@ ifdef LLAMA_CUBLAS
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
NVCCFLAGS += -lineinfo
|
||||
endif
|
||||
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
|
@ -77,8 +77,18 @@ class Model:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
if (n_ff := self.hparams.get("intermediate_size")) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
if (n_head := self.hparams.get("num_attention_head")) is not None:
|
||||
if (n_head := self.hparams.get("num_attention_heads")) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
|
||||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||
|
||||
def write_tensors(self):
|
||||
@ -170,6 +180,8 @@ class Model:
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@ -207,6 +219,8 @@ class Model:
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@ -837,6 +851,11 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
|
||||
class MixtralModel(Model):
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
class QwenModel(Model):
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
|
74
convert.py
74
convert.py
@ -42,6 +42,7 @@ NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
ARCH = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
DEFAULT_CONCURRENCY = 8
|
||||
|
||||
#
|
||||
# data types
|
||||
#
|
||||
@ -62,10 +63,10 @@ class UnquantizedDataType(DataType):
|
||||
pass
|
||||
|
||||
|
||||
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
||||
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
||||
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
||||
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
||||
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
||||
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
||||
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
||||
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@ -151,14 +152,16 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
||||
|
||||
@dataclass
|
||||
class Params:
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_layer: int
|
||||
n_ctx: int
|
||||
n_ff: int
|
||||
n_head: int
|
||||
n_head_kv: int
|
||||
f_norm_eps: float
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_layer: int
|
||||
n_ctx: int
|
||||
n_ff: int
|
||||
n_head: int
|
||||
n_head_kv: int
|
||||
n_experts: int | None = None
|
||||
n_experts_used: int | None = None
|
||||
f_norm_eps: float | None = None
|
||||
|
||||
rope_scaling_type: gguf.RopeScalingType | None = None
|
||||
f_rope_freq_base: float | None = None
|
||||
@ -233,6 +236,13 @@ class Params:
|
||||
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
|
||||
if "num_local_experts" in config:
|
||||
n_experts = config["num_local_experts"]
|
||||
n_experts_used = config["num_experts_per_tok"]
|
||||
|
||||
return Params(
|
||||
n_vocab = config["vocab_size"],
|
||||
n_embd = config["hidden_size"],
|
||||
@ -241,6 +251,8 @@ class Params:
|
||||
n_ff = config["intermediate_size"],
|
||||
n_head = (n_head := config["num_attention_heads"]),
|
||||
n_head_kv = config.get("num_key_value_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["rms_norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
rope_scaling_type = rope_scaling_type,
|
||||
@ -255,8 +267,15 @@ class Params:
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
f_rope_freq_base = None
|
||||
|
||||
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
||||
if config.get("rope_theta") == 1000000:
|
||||
if config.get("moe"):
|
||||
# Mixtral
|
||||
n_ctx = 32768
|
||||
elif config.get("rope_theta") == 1000000:
|
||||
# CodeLlama
|
||||
n_ctx = 16384
|
||||
elif config["norm_eps"] == 1e-05:
|
||||
@ -266,16 +285,27 @@ class Params:
|
||||
# LLaMA v1
|
||||
n_ctx = 2048
|
||||
|
||||
if "layers.0.feed_forward.w1.weight" in model:
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
|
||||
if config.get("moe"):
|
||||
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
|
||||
n_experts = config["moe"]["num_experts"]
|
||||
n_experts_used = config["moe"]["num_experts_per_tok"]
|
||||
f_rope_freq_base = 1e6
|
||||
|
||||
return Params(
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0],
|
||||
n_embd = config["dim"],
|
||||
n_layer = config["n_layers"],
|
||||
n_ctx = n_ctx,
|
||||
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
|
||||
n_ff = n_ff,
|
||||
n_head = (n_head := config["n_heads"]),
|
||||
n_head_kv = config.get("n_kv_heads", n_head),
|
||||
n_experts = n_experts,
|
||||
n_experts_used = n_experts_used,
|
||||
f_norm_eps = config["norm_eps"],
|
||||
f_rope_freq_base = config.get("rope_theta"),
|
||||
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@ -832,7 +862,17 @@ class OutputFile:
|
||||
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
||||
self.gguf.add_head_count (params.n_head)
|
||||
self.gguf.add_head_count_kv (params.n_head_kv)
|
||||
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
|
||||
|
||||
if params.n_experts:
|
||||
self.gguf.add_expert_count(params.n_experts)
|
||||
|
||||
if params.n_experts_used:
|
||||
self.gguf.add_expert_used_count(params.n_experts_used)
|
||||
|
||||
if params.f_norm_eps:
|
||||
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
|
||||
else:
|
||||
raise ValueError('f_norm_eps is None')
|
||||
|
||||
if params.f_rope_freq_base is not None:
|
||||
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
||||
@ -956,7 +996,7 @@ class OutputFile:
|
||||
|
||||
|
||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
|
||||
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||
return GGMLFileType.AllF32
|
||||
|
297
ggml-cuda.cu
297
ggml-cuda.cu
@ -1,13 +1,15 @@
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <atomic>
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cinttypes>
|
||||
#include <float.h>
|
||||
#include <limits>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <atomic>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
@ -1684,31 +1686,65 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(const void * x, const int32_t * y, dst_t * dst, const int ncols) {
|
||||
const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
static __global__ void k_get_rows(
|
||||
const void * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
if (col >= ncols) {
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int r = y[row];
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
// copy x[r*ncols + col] to dst[row*ncols + col]
|
||||
const int xi = r*ncols + col;
|
||||
const int di = row*ncols + col;
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = xi/qk; // block index
|
||||
const int iqs = (xi%qk)/qr; // quant index
|
||||
const int iybs = di - di%qk; // y block start index
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(x, ib, iqs, v);
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst[iybs + iqs + 0] = v.x;
|
||||
dst[iybs + iqs + y_offset] = v.y;
|
||||
dst_row[iybs + iqs + 0] = v.x;
|
||||
dst_row[iybs + iqs + y_offset] = v.y;
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
@ -5053,11 +5089,69 @@ static __global__ void im2col_f32_f16(
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ncols + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, nrows, 1);
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols);
|
||||
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
(void) dst;
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
|
||||
// strides in elements
|
||||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||||
|
||||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
(void) dst;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
@ -5069,7 +5163,6 @@ struct bin_bcast_cuda {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
@ -5117,26 +5210,28 @@ struct bin_bcast_cuda {
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
//size_t nb0 = cnb0[0];
|
||||
size_t nb0 = cnb0[0];
|
||||
size_t nb1 = cnb0[1];
|
||||
size_t nb2 = cnb0[2];
|
||||
size_t nb3 = cnb0[3];
|
||||
|
||||
//size_t nb10 = cnb1[0];
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
//size_t s0 = nb0 / sizeof(src1_t);
|
||||
size_t s0 = nb0 / sizeof(src1_t);
|
||||
size_t s1 = nb1 / sizeof(src1_t);
|
||||
size_t s2 = nb2 / sizeof(src1_t);
|
||||
size_t s3 = nb3 / sizeof(src1_t);
|
||||
|
||||
//size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
@ -6447,36 +6542,34 @@ static void ggml_cuda_op_get_rows(
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
const int ncols = src0->ne[0];
|
||||
const int nrows = ggml_nelements(src1);
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda<1, 1, convert_f16>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda<1, 1, convert_f32>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
@ -8234,36 +8327,69 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_cuda_mul_mat_id(const ggml_tensor * _src0, const ggml_tensor * _src1, ggml_tensor * dst) {
|
||||
static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
#if 0
|
||||
//#ifdef CUDA_USE_TENSOR_CORES
|
||||
// const bool use_tensor_cores = true;
|
||||
//#else
|
||||
// const bool use_tensor_cores = false;
|
||||
//#endif
|
||||
|
||||
ggml_cuda_mul_mat_id_cublas(dst);
|
||||
|
||||
// TODO: mmq/mmv support
|
||||
#else
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const int id = dst->op_params[0];
|
||||
|
||||
int32_t * ids_dev = (int32_t *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
|
||||
int32_t a_id;
|
||||
CUDA_CHECK(cudaMemcpyAsync(&a_id, ids_dev + id, sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
|
||||
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||
|
||||
ggml_cuda_mul_mat(src0, src1, dst);
|
||||
#endif
|
||||
|
||||
(void) _src0;
|
||||
(void) _src1;
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int32_t id = ((int32_t *) dst->op_params)[0];
|
||||
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
|
||||
if (ids->backend == GGML_BACKEND_GPU) {
|
||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
} else {
|
||||
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
|
||||
}
|
||||
|
||||
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
|
||||
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
ggml_tensor_extra_gpu src1_row_extra;
|
||||
ggml_tensor_extra_gpu dst_row_extra;
|
||||
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
src1_row.ne[1] = 1;
|
||||
dst_row.ne[1] = 1;
|
||||
|
||||
src1_row.nb[2] = src1_row.nb[1];
|
||||
dst_row.nb[2] = dst_row.nb[1];
|
||||
|
||||
src1_row.nb[3] = src1_row.nb[1];
|
||||
dst_row.nb[3] = dst_row.nb[1];
|
||||
|
||||
src1_row.extra = &src1_row_extra;
|
||||
dst_row.extra = &dst_row_extra;
|
||||
|
||||
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
|
||||
src1_row.data = (char *) src1->data + i01*src1->nb[1];
|
||||
|
||||
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
|
||||
dst_row.data = (char *) dst->data + i01*dst->nb[1];
|
||||
|
||||
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -9181,6 +9307,45 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
}
|
||||
return true;
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
case GGML_TYPE_Q8_0:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
ggml_type src1_type = op->src[1]->type;
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
@ -9188,7 +9353,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_MUL:
|
||||
@ -9197,7 +9361,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
@ -9264,7 +9427,9 @@ static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * use
|
||||
UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" int ggml_backend_cuda_reg_devices() {
|
||||
extern "C" int ggml_backend_cuda_reg_devices();
|
||||
|
||||
int ggml_backend_cuda_reg_devices() {
|
||||
int device_count = ggml_cuda_get_device_count();
|
||||
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
|
||||
for (int i = 0; i < device_count; i++) {
|
||||
|
332
ggml-metal.m
332
ggml-metal.m
@ -102,6 +102,21 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_DECL_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_id_q6_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||
@ -140,6 +155,7 @@ struct ggml_metal_context {
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DECL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(concat);
|
||||
GGML_METAL_DECL_KERNEL(sqr);
|
||||
GGML_METAL_DECL_KERNEL(sum_rows);
|
||||
@ -177,6 +193,8 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
||||
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
|
||||
} else {
|
||||
char* buffer2 = malloc(len+1);
|
||||
va_end(args);
|
||||
va_start(args, format);
|
||||
vsnprintf(buffer2, len+1, format, args);
|
||||
buffer2[len] = 0;
|
||||
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
|
||||
@ -352,6 +370,21 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_ADD_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_id_q6_K_f32);
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||
@ -392,6 +425,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_ADD_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(concat);
|
||||
GGML_METAL_ADD_KERNEL(sqr);
|
||||
GGML_METAL_ADD_KERNEL(sum_rows);
|
||||
@ -452,6 +486,21 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_f32_f32);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_1row);
|
||||
//GGML_METAL_DEL_KERNEL(mul_mv_id_f16_f32_l4);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q8_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q2_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q3_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q4_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q5_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_id_q6_K_f32);
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||
@ -492,6 +541,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_0);
|
||||
//GGML_METAL_DEL_KERNEL(cpy_f32_q5_1);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(concat);
|
||||
GGML_METAL_DEL_KERNEL(sqr);
|
||||
GGML_METAL_DEL_KERNEL(sum_rows);
|
||||
@ -803,8 +853,9 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_MUL:
|
||||
@ -819,14 +870,38 @@ static bool ggml_metal_supports_op(const struct ggml_tensor * op) {
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return true;
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CONT:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
};
|
||||
}
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
return op->ne[0] % 4 == 0;
|
||||
}
|
||||
@ -1001,34 +1076,37 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
bool bcast_row = false;
|
||||
|
||||
int64_t nb = ne00;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) {
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
nb = ne00 / 4;
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add_row]; break;
|
||||
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul_row]; break;
|
||||
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div_row]; break;
|
||||
case GGML_OP_ADD: pipeline = ctx->pipeline_add_row; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->pipeline_mul_row; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->pipeline_div_row; break;
|
||||
default: GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
bcast_row = true;
|
||||
} else {
|
||||
switch (dst->op) {
|
||||
case GGML_OP_ADD: [encoder setComputePipelineState:ctx->pipeline_add]; break;
|
||||
case GGML_OP_MUL: [encoder setComputePipelineState:ctx->pipeline_mul]; break;
|
||||
case GGML_OP_DIV: [encoder setComputePipelineState:ctx->pipeline_div]; break;
|
||||
case GGML_OP_ADD: pipeline = ctx->pipeline_add; break;
|
||||
case GGML_OP_MUL: pipeline = ctx->pipeline_mul; break;
|
||||
case GGML_OP_DIV: pipeline = ctx->pipeline_div; break;
|
||||
default: GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
@ -1063,7 +1141,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} else {
|
||||
const int nth = MIN(1024, ne0);
|
||||
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
}
|
||||
@ -1193,7 +1271,11 @@ void ggml_metal_graph_compute(
|
||||
const float scale = ((float *) dst->op_params)[0];
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
if (id_src1) {
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||
@ -1444,7 +1526,7 @@ void ggml_metal_graph_compute(
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
const int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
@ -1456,7 +1538,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
GGML_ASSERT(src0t == GGML_TYPE_I32);
|
||||
|
||||
const int n_as = ne00;
|
||||
const int n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
// TODO: make this more general
|
||||
GGML_ASSERT(n_as <= 8);
|
||||
@ -1488,14 +1570,22 @@ void ggml_metal_graph_compute(
|
||||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = 0;
|
||||
int ne11_mm_min = 1;
|
||||
|
||||
const int idx = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
// batch size
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
|
||||
const int64_t _ne1 = 1; // kernel_mul_mm_impl needs a reference in constant memory
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne11 > ne11_mm_min) {
|
||||
// !!!
|
||||
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
|
||||
// indirect matrix multiplication
|
||||
// !!!
|
||||
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && _ne1 > ne11_mm_min) {
|
||||
switch (src2->type) {
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f32_f32]; break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_id_f16_f32]; break;
|
||||
@ -1514,19 +1604,22 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:3];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:4];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:5];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:6];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:15];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:16];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:17];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:18];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < n_as; ++j) {
|
||||
struct ggml_tensor * src_cur = dst->src[2 + j];
|
||||
@ -1534,11 +1627,157 @@ void ggml_metal_graph_compute(
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:16 + j];
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
|
||||
}
|
||||
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne21 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
|
||||
// TODO: processing one row at a time (ne11 -> 1) is not efficient
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (_ne1 + 31)/32, (ne21 + 63)/64, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
int nrows = 1;
|
||||
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src2t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f32_f32];
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
nth0 = 32;
|
||||
nth1 = 1;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_f16_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q8_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q2_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q3_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
nth0 = 4; //1;
|
||||
nth1 = 8; //32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q4_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q5_K_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
nth0 = 2;
|
||||
nth1 = 32;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_id_q6_K_f32];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
};
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3];
|
||||
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
||||
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
||||
[encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6];
|
||||
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
|
||||
[encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
|
||||
[encoder setBytes:&r2 length:sizeof(r2) atIndex:20];
|
||||
[encoder setBytes:&r3 length:sizeof(r3) atIndex:21];
|
||||
[encoder setBytes:&idx length:sizeof(idx) atIndex:22];
|
||||
// TODO: how to make this an array? read Metal docs
|
||||
for (int j = 0; j < n_as; ++j) {
|
||||
struct ggml_tensor * src_cur = dst->src[2 + j];
|
||||
|
||||
size_t offs_src_cur = 0;
|
||||
id<MTLBuffer> id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur);
|
||||
|
||||
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j];
|
||||
}
|
||||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
const int64_t ny = (_ne1 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
@ -1559,16 +1798,19 @@ void ggml_metal_graph_compute(
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
|
||||
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
|
||||
|
||||
const int64_t n = ggml_nelements(src1);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_RMS_NORM:
|
||||
{
|
||||
@ -1813,7 +2055,7 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
switch (dstt) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f32]; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
};
|
||||
} break;
|
||||
|
1320
ggml-metal.metal
1320
ggml-metal.metal
File diff suppressed because it is too large
Load Diff
168
ggml.c
168
ggml.c
@ -4075,17 +4075,18 @@ struct ggml_tensor * ggml_mul_mat(
|
||||
|
||||
struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as[],
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b) {
|
||||
|
||||
int64_t n_as = ids->ne[0];
|
||||
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_vector(ids));
|
||||
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
|
||||
GGML_ASSERT(ids->ne[1] == b->ne[1]);
|
||||
GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
|
||||
GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
|
||||
GGML_ASSERT(id >= 0 && id < n_as);
|
||||
GGML_ASSERT(id >= 0 && id < ids->ne[0]);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
@ -4097,13 +4098,14 @@ struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(as[0]->n_dims, b->n_dims), ne);
|
||||
|
||||
ggml_set_op_params_i32(result, 0, id);
|
||||
ggml_set_op_params_i32(result, 1, n_as);
|
||||
|
||||
result->op = GGML_OP_MUL_MAT_ID;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = ids;
|
||||
result->src[1] = b;
|
||||
|
||||
for (int64_t i = 0; i < n_as; i++) {
|
||||
for (int i = 0; i < n_as; i++) {
|
||||
struct ggml_tensor * a = as[i];
|
||||
GGML_ASSERT(ggml_are_same_shape(as[0], a));
|
||||
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||
@ -4731,7 +4733,9 @@ struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(a->ne[2] == b->ne[1]);
|
||||
GGML_ASSERT(b->ne[3] == 1);
|
||||
GGML_ASSERT(b->type == GGML_TYPE_I32);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
@ -4741,7 +4745,7 @@ struct ggml_tensor * ggml_get_rows(
|
||||
|
||||
// TODO: implement non F32 return
|
||||
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
|
||||
|
||||
result->op = GGML_OP_GET_ROWS;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -9504,8 +9508,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
|
||||
// all the experts for each batch element and the processing would become incredibly slow
|
||||
// TODO: find the optimal values for these
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
if (dst->op != GGML_OP_MUL_MAT_ID &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
//src0->type == GGML_TYPE_F32 &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
@ -9519,11 +9526,16 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||
}
|
||||
#endif
|
||||
|
||||
// off1 = offset in i11 and i1
|
||||
// cne1 = ne11 and ne1
|
||||
// in a normal matrix multiplication, off1 = 0 and cne1 = ne1
|
||||
// during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
|
||||
static void ggml_compute_forward_mul_mat(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
struct ggml_tensor * dst,
|
||||
int64_t off1, int64_t cne1) {
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
@ -9591,10 +9603,9 @@ static void ggml_compute_forward_mul_mat(
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
float * const wdata = params->wdata;
|
||||
@ -9611,10 +9622,10 @@ static void ggml_compute_forward_mul_mat(
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne11, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
cne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
|
||||
@ -9630,6 +9641,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
assert(params->wsize >= ne11*ne12*ne13*row_size);
|
||||
assert(src1->type == GGML_TYPE_F32);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
@ -9652,7 +9664,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
|
||||
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
|
||||
|
||||
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
|
||||
|
||||
@ -9694,9 +9706,9 @@ static void ggml_compute_forward_mul_mat(
|
||||
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||||
const int64_t i13 = (ir1/(ne12*ne11));
|
||||
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
|
||||
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
|
||||
const int64_t i13 = (ir1/(ne12*cne1));
|
||||
const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
|
||||
const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1;
|
||||
|
||||
// broadcast src0 into src1
|
||||
const int64_t i03 = i13/r3;
|
||||
@ -9736,20 +9748,28 @@ static void ggml_compute_forward_mul_mat(
|
||||
|
||||
static void ggml_compute_forward_mul_mat_id(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * ids = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
// during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
|
||||
ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
|
||||
return;
|
||||
}
|
||||
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int id = ggml_get_op_params_i32(dst, 0);
|
||||
const int n_as = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
const int a_id = ((int32_t *)ids->data)[id];
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(a_id >= 0 && a_id < ids->ne[0]);
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[a_id + 2];
|
||||
|
||||
ggml_compute_forward_mul_mat(params, src0, src1, dst);
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_out_prod
|
||||
@ -10325,21 +10345,30 @@ static void ggml_compute_forward_get_rows_q(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == ggml_type_size(type));
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == ggml_type_size(type));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + r*src0->nb[1]),
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -10354,19 +10383,26 @@ static void ggml_compute_forward_get_rows_f16(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == sizeof(ggml_fp16_t));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
for (int j = 0; j < nc; ++j) {
|
||||
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
|
||||
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_fp16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -10382,19 +10418,27 @@ static void ggml_compute_forward_get_rows_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nelements(src1);
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
assert( dst->ne[0] == nc);
|
||||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(float));
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
assert(ne0 == nc);
|
||||
assert(ne02 == ne11);
|
||||
assert(nb00 == sizeof(float));
|
||||
assert(ggml_nrows(dst) == nr);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]),
|
||||
(float *) ((char *) src0->data + r*src0->nb[1]));
|
||||
// TODO: multi-thread
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
for (int64_t i10 = 0; i10 < ne10; ++i10) {
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
||||
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -14037,11 +14081,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
|
||||
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]);
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
ggml_compute_forward_mul_mat_id(params, tensor);
|
||||
ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
|
6
ggml.h
6
ggml.h
@ -217,7 +217,7 @@
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_PARAMS 2048
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_SRC 10
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
@ -1051,7 +1051,8 @@ extern "C" {
|
||||
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
|
||||
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * as[],
|
||||
struct ggml_tensor * const as[],
|
||||
int n_as,
|
||||
struct ggml_tensor * ids,
|
||||
int id,
|
||||
struct ggml_tensor * b);
|
||||
@ -1263,6 +1264,7 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// supports 3D: a->ne[2] == b->ne[1]
|
||||
GGML_API struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -38,6 +38,8 @@ class Keys:
|
||||
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
EXPERT_COUNT = "{arch}.expert_count"
|
||||
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
||||
|
||||
class Attention:
|
||||
HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@ -111,10 +113,14 @@ class MODEL_TENSOR(IntEnum):
|
||||
ATTN_NORM = auto()
|
||||
ATTN_NORM_2 = auto()
|
||||
ATTN_ROT_EMBD = auto()
|
||||
FFN_GATE_INP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE = auto()
|
||||
FFN_DOWN = auto()
|
||||
FFN_UP = auto()
|
||||
FFN_NORM = auto()
|
||||
FFN_GATE_EXP = auto()
|
||||
FFN_DOWN_EXP = auto()
|
||||
FFN_UP_EXP = auto()
|
||||
ATTN_Q_NORM = auto()
|
||||
ATTN_K_NORM = auto()
|
||||
|
||||
@ -154,10 +160,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@ -172,10 +182,14 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.GPTNEOX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
|
@ -339,6 +339,12 @@ class GGUFWriter:
|
||||
def add_clamp_kqv(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
||||
|
||||
def add_expert_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_used_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_layer_norm_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||
|
||||
|
@ -149,6 +149,11 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
@ -164,11 +169,21 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.w1", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward gate
|
||||
MODEL_TENSOR.FFN_GATE: (
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
@ -185,6 +200,11 @@ class TensorNameMap:
|
||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
),
|
||||
@ -213,11 +233,14 @@ class TensorNameMap:
|
||||
for tensor, keys in self.block_mappings_cfg.items():
|
||||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
# TODO: make this configurable
|
||||
n_experts = 8
|
||||
for xid in range(n_experts):
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid, xid = xid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||
result = self.mapping.get(key)
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
202
llama.cpp
202
llama.cpp
@ -91,7 +91,8 @@
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
#define LLAMA_MAX_EXPERTS 8
|
||||
|
||||
//
|
||||
// logging
|
||||
@ -231,6 +232,8 @@ enum llm_kv {
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_EXPERT_COUNT,
|
||||
LLM_KV_EXPERT_USED_COUNT,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
@ -281,6 +284,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
||||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||||
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
||||
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
|
||||
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||||
@ -338,10 +343,14 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_DOWN_EXP,
|
||||
LLM_TENSOR_FFN_GATE_EXP,
|
||||
LLM_TENSOR_FFN_UP_EXP,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
};
|
||||
@ -360,10 +369,14 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
},
|
||||
},
|
||||
{
|
||||
@ -585,6 +598,10 @@ struct LLM_TN {
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
|
||||
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
|
||||
return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@ -1164,6 +1181,8 @@ struct llama_hparams {
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_ff;
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
@ -1178,15 +1197,18 @@ struct llama_hparams {
|
||||
float f_max_alibi_bias;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
if (this->vocab_only != other.vocab_only) return true;
|
||||
if (this->n_vocab != other.n_vocab) return true;
|
||||
if (this->n_ctx_train != other.n_ctx_train) return true;
|
||||
if (this->n_embd != other.n_embd) return true;
|
||||
if (this->n_head != other.n_head) return true;
|
||||
if (this->n_head_kv != other.n_head_kv) return true;
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
if (this->vocab_only != other.vocab_only) return true;
|
||||
if (this->n_vocab != other.n_vocab) return true;
|
||||
if (this->n_ctx_train != other.n_ctx_train) return true;
|
||||
if (this->n_embd != other.n_embd) return true;
|
||||
if (this->n_head != other.n_head) return true;
|
||||
if (this->n_head_kv != other.n_head_kv) return true;
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
||||
if (this->rope_finetuned != other.rope_finetuned) return true;
|
||||
if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
|
||||
|
||||
@ -1268,6 +1290,12 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_down; // w2
|
||||
struct ggml_tensor * ffn_up; // w3
|
||||
|
||||
// ff MoE
|
||||
struct ggml_tensor * ffn_gate_inp;
|
||||
struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
|
||||
struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
|
||||
struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
|
||||
|
||||
// ff bias
|
||||
struct ggml_tensor * ffn_down_b; // b2
|
||||
struct ggml_tensor * ffn_up_b; // b3
|
||||
@ -2440,6 +2468,16 @@ static void llm_load_hparams(
|
||||
ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
|
||||
ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
|
||||
ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||||
ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
||||
ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
||||
|
||||
GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
|
||||
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
|
||||
if (hparams.n_expert > 0) {
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
} else {
|
||||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||||
}
|
||||
|
||||
// n_head_kv is optional, default to n_head
|
||||
hparams.n_head_kv = hparams.n_head;
|
||||
@ -2871,6 +2909,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
||||
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
|
||||
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
|
||||
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
|
||||
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
|
||||
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
|
||||
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
||||
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
||||
@ -3025,9 +3065,26 @@ static void llm_load_tensors(
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_gate_inp = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, backend, false);
|
||||
|
||||
if (layer.ffn_gate_inp == nullptr) {
|
||||
GGML_ASSERT(hparams.n_expert == 0);
|
||||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
} else {
|
||||
GGML_ASSERT(hparams.n_expert > 0);
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
|
||||
// MoE branch
|
||||
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
|
||||
layer.ffn_gate_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}, backend_split);
|
||||
}
|
||||
}
|
||||
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
vram_weights +=
|
||||
@ -3037,8 +3094,18 @@ static void llm_load_tensors(
|
||||
(layer.bk ? ggml_nbytes(layer.bk) : 0) +
|
||||
(layer.bv ? ggml_nbytes(layer.bv) : 0) +
|
||||
(layer.bo ? ggml_nbytes(layer.bo) : 0) +
|
||||
ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
|
||||
ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||
ggml_nbytes(layer.ffn_norm);
|
||||
|
||||
if (layer.ffn_gate_inp == nullptr) {
|
||||
vram_weights +=
|
||||
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||
} else {
|
||||
vram_weights += ggml_nbytes(layer.ffn_gate_inp);
|
||||
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
|
||||
vram_weights +=
|
||||
ggml_nbytes(layer.ffn_gate_exp[x]) + ggml_nbytes(layer.ffn_down_exp[x]) + ggml_nbytes(layer.ffn_up_exp[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@ -4019,6 +4086,8 @@ struct llm_build_context {
|
||||
const int64_t n_head_kv;
|
||||
const int64_t n_embd_head;
|
||||
const int64_t n_embd_gqa;
|
||||
const int64_t n_expert;
|
||||
const int64_t n_expert_used;
|
||||
|
||||
const float freq_base;
|
||||
const float freq_scale;
|
||||
@ -4060,6 +4129,8 @@ struct llm_build_context {
|
||||
n_head_kv (hparams.n_head_kv),
|
||||
n_embd_head (hparams.n_embd_head()),
|
||||
n_embd_gqa (hparams.n_embd_gqa()),
|
||||
n_expert (hparams.n_expert),
|
||||
n_expert_used (hparams.n_expert_used),
|
||||
freq_base (cparams.rope_freq_base),
|
||||
freq_scale (cparams.rope_freq_scale),
|
||||
ext_factor (cparams.yarn_ext_factor),
|
||||
@ -4184,7 +4255,7 @@ struct llm_build_context {
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
@ -4196,6 +4267,69 @@ struct llm_build_context {
|
||||
model.layers[il].ffn_down, NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||
cb(weights, "ffn_moe_weights", il);
|
||||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_expert_used; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
|
||||
cb(cur_up, "ffn_moe_up", il);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
|
||||
cb(cur_gate, "ffn_moe_gate", il);
|
||||
|
||||
cur_gate = ggml_silu(ctx0, cur_gate);
|
||||
cb(cur_gate, "ffn_moe_silu", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||
cb(cur_expert, "ffn_moe_down", il);
|
||||
|
||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
cb(cur_expert, "ffn_moe_weighted", il);
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
@ -5450,6 +5584,20 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||
{ "ffn_relu", OFFLOAD_FUNC },
|
||||
{ "ffn_sqr(relu)", OFFLOAD_FUNC },
|
||||
|
||||
{ "ffn_moe_logits", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_probs", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_argsort", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights_sum", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weights_norm", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_weighted", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_up", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_gate", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_silu", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_gate_par", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_down", OFFLOAD_FUNC },
|
||||
{ "ffn_moe_out", OFFLOAD_FUNC },
|
||||
|
||||
{ "l_out", OFFLOAD_FUNC },
|
||||
|
||||
{ "result_norm", OFFLOAD_FUNC_EMB },
|
||||
@ -8067,11 +8215,9 @@ static void llama_convert_tensor_internal(
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
static ggml_type get_k_quant_type(
|
||||
quantize_state_internal & qs,
|
||||
ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
|
||||
) {
|
||||
static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
const llm_arch arch = qs.model.arch;
|
||||
const auto tn = LLM_TN(arch);
|
||||
@ -8105,7 +8251,18 @@ static ggml_type get_k_quant_type(
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
++qs.i_attention_wv;
|
||||
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
@ -8318,6 +8475,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
quantize &= params->quantize_output_tensor || name != "output.weight";
|
||||
quantize &= !params->only_copy;
|
||||
|
||||
// do not quantize expert gating tensors
|
||||
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
||||
|
||||
enum ggml_type new_type;
|
||||
void * new_data;
|
||||
size_t new_size;
|
||||
|
@ -20,8 +20,6 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
size_t size = ggml_nelements(tensor);
|
||||
std::vector<float> data(size);
|
||||
|
||||
std::random_device rd;
|
||||
|
||||
#if 0
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
@ -31,6 +29,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
}
|
||||
#endif
|
||||
auto init_thread = [&](size_t start, size_t end) {
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
|
||||
@ -51,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
t.join();
|
||||
}
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
@ -71,23 +70,28 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
std::vector<uint8_t> buf(ggml_nbytes(t));
|
||||
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
|
||||
|
||||
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
|
||||
size_t bs = ggml_blck_size(t->type);
|
||||
|
||||
// access elements by index to avoid gaps in views
|
||||
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
||||
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
|
||||
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < t->ne[0]; i0++) {
|
||||
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0];
|
||||
float v;
|
||||
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
|
||||
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
|
||||
if (t->type == GGML_TYPE_F16) {
|
||||
v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]);
|
||||
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
|
||||
} else if (t->type == GGML_TYPE_F32) {
|
||||
v = *(float *) &buf[i];
|
||||
tv.push_back(*(float *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I32) {
|
||||
v = *(int32_t *) &buf[i];
|
||||
tv.push_back((float)*(int32_t *) &buf[i]);
|
||||
} else if (ggml_is_quantized(t->type)) {
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
tv.push_back(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -233,6 +237,10 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
||||
struct test_case {
|
||||
virtual ~test_case() {}
|
||||
|
||||
virtual std::string op_desc(ggml_tensor * t) {
|
||||
return ggml_op_desc(t);
|
||||
}
|
||||
|
||||
virtual std::string vars() {
|
||||
return "";
|
||||
}
|
||||
@ -240,7 +248,7 @@ struct test_case {
|
||||
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
|
||||
|
||||
virtual double max_nmse_err() {
|
||||
return 1e-6;
|
||||
return 1e-7;
|
||||
}
|
||||
|
||||
virtual void initialize_tensors(ggml_context * ctx) {
|
||||
@ -270,13 +278,13 @@ struct test_case {
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
|
||||
//printf(" %s: skipping\n", ggml_op_desc(out));
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
|
||||
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
@ -317,7 +325,7 @@ struct test_case {
|
||||
for (size_t i = 0; i < f1.size(); i++) {
|
||||
// check for nans
|
||||
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
|
||||
printf("NaN at index %zu ", i);
|
||||
printf("[%s] NaN at index %zu (%f %f) ", ggml_op_desc(t1), i, f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
@ -325,12 +333,12 @@ struct test_case {
|
||||
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
|
||||
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
|
||||
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
|
||||
printf("inf sign mismatch: %f %f ", f1[i], f2[i]);
|
||||
printf("[%s] inf sign mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
printf("inf mismatch: %f %f ", f1[i], f2[i]);
|
||||
printf("[%s] inf mismatch: %f %f ", ggml_op_desc(t1), f1[i], f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
@ -339,10 +347,16 @@ struct test_case {
|
||||
|
||||
double err = nmse(f1.data(), f2.data(), f1.size());
|
||||
if (err > ud->max_err) {
|
||||
printf("NMSE = %f ", err);
|
||||
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err);
|
||||
//for (int i = 0; i < f1.size(); i++) {
|
||||
// printf("(%f, %f) ", f1[i], f2[i]);
|
||||
//}
|
||||
//printf("\n");
|
||||
ud->ok = false;
|
||||
}
|
||||
return true;
|
||||
|
||||
GGML_UNUSED(index);
|
||||
};
|
||||
|
||||
ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
||||
@ -372,13 +386,13 @@ struct test_case {
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
|
||||
//printf(" %s: skipping\n", ggml_op_desc(out));
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
|
||||
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
@ -430,8 +444,9 @@ struct test_case {
|
||||
return size;
|
||||
};
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out)
|
||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
|
||||
continue;
|
||||
}
|
||||
mem += tensor_op_size(gf->nodes[i]);
|
||||
}
|
||||
|
||||
@ -486,17 +501,22 @@ struct test_get_rows : public test_case {
|
||||
const int n; // cols
|
||||
const int m; // rows
|
||||
const int r; // rows to get
|
||||
const int b; // batch size
|
||||
const bool v; // view (non-contiguous src1)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR4(type, n, m, r);
|
||||
return VARS_TO_STR6(type, n, m, r, b, v);
|
||||
}
|
||||
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3)
|
||||
: type(type), n(n), m(m), r(r) {}
|
||||
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
||||
: type(type), n(n), m(m), r(r), b(b), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m);
|
||||
ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r);
|
||||
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
|
||||
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
||||
if (v) {
|
||||
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * out = ggml_get_rows(ctx, in, rows);
|
||||
return out;
|
||||
}
|
||||
@ -504,12 +524,13 @@ struct test_get_rows : public test_case {
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// rows
|
||||
std::vector<int> data(r);
|
||||
for (int i = 0; i < r; i++) {
|
||||
std::vector<int> data(r*b);
|
||||
for (int i = 0; i < r*b; i++) {
|
||||
data[i] = rand() % m;
|
||||
}
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int));
|
||||
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
@ -770,11 +791,10 @@ struct test_mul_mat_id : public test_case {
|
||||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const std::array<int64_t, 2> bs; // dims 3 and 4
|
||||
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
||||
const bool v; // view (non-contiguous ids)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR9(type_a, type_b, n_mats, id, m, n, k, bs, nr);
|
||||
return VARS_TO_STR8(type_a, type_b, n_mats, id, m, n, k, v);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
@ -782,7 +802,7 @@ struct test_mul_mat_id : public test_case {
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
size_t a = ggml_nbytes(t->src[2]) * n * nr[0] * nr[1];
|
||||
size_t a = ggml_nbytes(t->src[2]) * n;
|
||||
size_t b = ggml_nbytes(t->src[1]) * m;
|
||||
size_t c = ggml_nbytes(t);
|
||||
return a + b + c;
|
||||
@ -792,35 +812,41 @@ struct test_mul_mat_id : public test_case {
|
||||
|
||||
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int n_mats = 2, int id = 0,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
||||
std::array<int64_t, 2> bs = {10, 10},
|
||||
std::array<int64_t, 2> nr = {2, 2})
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32, bool v = false)
|
||||
: type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
|
||||
m(m), n(n), k(k), bs(bs), nr(nr) {}
|
||||
m(m), n(n), k(k), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
std::vector<ggml_tensor *> mats;
|
||||
for (int i = 0; i < n_mats; i++) {
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, type_a, k, m);
|
||||
mats.push_back(a);
|
||||
}
|
||||
ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_mats);
|
||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b);
|
||||
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
||||
if (v) {
|
||||
ids = ggml_view_2d(ctx, ids, n_mats/2, ids->ne[1], ids->nb[1], 0);
|
||||
}
|
||||
ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, k, n);
|
||||
ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), n_mats, ids, v ? id/2 : id, b);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
std::random_device rd;
|
||||
std::default_random_engine rng(rd());
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
if (ggml_is_view_op(t->op)) { continue; }
|
||||
// ids
|
||||
std::vector<int> data(n_mats);
|
||||
for (int i = 0; i < n_mats; i++) {
|
||||
data[i] = i;
|
||||
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
||||
std::vector<int32_t> data(t->ne[0]);
|
||||
for (int i = 0; i < t->ne[0]; i++) {
|
||||
data[i] = i % n_mats;
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), rng);
|
||||
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
||||
}
|
||||
std::shuffle(data.begin(), data.end(), std::default_random_engine(std::random_device()()));
|
||||
ggml_backend_tensor_set(t, data.data(), 0, n_mats * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
@ -1109,6 +1135,90 @@ struct test_sum_rows : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// Mixtral MOE
|
||||
struct test_moe : public test_case {
|
||||
const int n_experts;
|
||||
const int n_experts_per_tok;
|
||||
const int n_tokens;
|
||||
const int n_embd;
|
||||
const int n_ff;
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
return "MOE";
|
||||
|
||||
GGML_UNUSED(t);
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(n_experts, n_experts_per_tok, n_tokens, n_embd, n_ff);
|
||||
}
|
||||
|
||||
test_moe(int n_experts = 8, int n_experts_per_tok = 2, int n_tokens = 1, int n_embd = 4096, int n_ff = 14336)
|
||||
: n_experts(n_experts), n_experts_per_tok(n_experts_per_tok), n_tokens(n_tokens), n_embd(n_embd), n_ff(n_ff) {
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * ffn_gate_inp = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_experts);
|
||||
|
||||
std::vector<ggml_tensor *> ffn_up_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_gate_exp(n_experts);
|
||||
std::vector<ggml_tensor *> ffn_down_exp(n_experts);
|
||||
|
||||
for (int i = 0; i < n_experts; ++i) {
|
||||
ffn_up_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_gate_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
ffn_down_exp[i] = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
}
|
||||
|
||||
ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
|
||||
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
|
||||
ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd));
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
|
||||
|
||||
ggml_tensor * weights = ggml_get_rows(ctx,
|
||||
ggml_reshape_3d(ctx, probs, 1, n_experts, n_tokens), selected_experts);
|
||||
|
||||
weights = ggml_reshape_2d(ctx, weights, n_experts_per_tok, n_tokens);
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights);
|
||||
|
||||
weights = ggml_div(ctx, weights, weights_sum);
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
||||
for (int i = 0; i < n_experts_per_tok; ++i) {
|
||||
ggml_tensor * cur_expert;
|
||||
|
||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx, ffn_up_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx, ffn_gate_exp.data(), n_experts, selected_experts, i, cur);
|
||||
|
||||
cur_gate = ggml_silu(ctx, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_up, cur_gate);
|
||||
|
||||
cur_expert = ggml_mul_mat_id(ctx, ffn_down_exp.data(), n_experts, selected_experts, i, cur_expert);
|
||||
|
||||
cur_expert = ggml_mul(ctx, cur_expert,
|
||||
ggml_view_2d(ctx, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||
|
||||
if (i == 0) {
|
||||
moe_out = cur_expert;
|
||||
} else {
|
||||
moe_out = ggml_add(ctx, moe_out, cur_expert);
|
||||
}
|
||||
}
|
||||
|
||||
cur = moe_out;
|
||||
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
enum test_mode {
|
||||
MODE_TEST,
|
||||
MODE_PERF,
|
||||
@ -1117,14 +1227,28 @@ enum test_mode {
|
||||
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
||||
std::vector<std::unique_ptr<test_case>> test_cases;
|
||||
|
||||
const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K
|
||||
};
|
||||
|
||||
// unary ops
|
||||
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
||||
test_cases.emplace_back(new test_unary((ggml_unary_op) op));
|
||||
}
|
||||
|
||||
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 10, 5, 3));
|
||||
test_cases.emplace_back(new test_get_rows(type, 16, 5, 3));
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
@ -1134,7 +1258,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
|
||||
|
||||
test_cases.emplace_back(new test_dup());
|
||||
test_cases.emplace_back(new test_cpy());
|
||||
|
||||
for (ggml_type type : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_cont());
|
||||
|
||||
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
|
||||
@ -1144,6 +1272,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
};
|
||||
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
|
||||
@ -1170,8 +1299,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
||||
add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
||||
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
||||
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
||||
|
||||
test_cases.emplace_back(new test_scale());
|
||||
|
||||
@ -1180,16 +1309,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
|
||||
}
|
||||
|
||||
const ggml_type all_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0,
|
||||
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K
|
||||
};
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
// FIXME: CPU crashes on f16xf16
|
||||
@ -1213,9 +1332,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
||||
for (int n_mats : {1, 2, 4}) {
|
||||
for (int n_mats : {2, 4, 8}) {
|
||||
for (int id = 0; id < n_mats; id++) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, {1, 1}, {1, 1}));
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1247,10 +1368,18 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_concat());
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_sum_rows());
|
||||
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {10, 10, 10, 10}));
|
||||
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, {2, 1, 1, 1}));
|
||||
|
||||
#if !defined(__SANITIZE_THREAD__)
|
||||
// FIXME: these tests use too much memory with thread sanitizer
|
||||
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 14336));
|
||||
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
|
||||
#endif
|
||||
|
||||
// run tests
|
||||
if (mode == MODE_TEST) {
|
||||
@ -1267,14 +1396,17 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
ggml_backend_free(backend_cpu);
|
||||
|
||||
return n_ok == test_cases.size();
|
||||
} else if (mode == MODE_PERF) {
|
||||
}
|
||||
|
||||
if (mode == MODE_PERF) {
|
||||
for (auto & test : test_cases) {
|
||||
test->eval_perf(backend, op_name);
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
GGML_ASSERT(false);
|
||||
return false;
|
||||
}
|
||||
|
||||
static void usage(char ** argv) {
|
||||
@ -1347,11 +1479,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
|
||||
|
||||
if (n_ok != ggml_backend_reg_get_count()) {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
return 1;
|
||||
} else {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user