CUDA: Faster Mixtral prompt processing (#4538)

* CUDA: make MoE tensors contiguous for batch size>1

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Johannes Gäßler 2023-12-20 15:41:22 +01:00 committed by GitHub
parent 328b83de23
commit 799fc22689
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -7830,6 +7830,11 @@ static void ggml_cuda_set_peer_access(const int n_tokens) {
}
#ifdef NDEBUG
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(ggml_cuda_set_device(id));
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(ggml_cuda_set_device(id));
@ -7881,8 +7886,6 @@ static void ggml_cuda_op_mul_mat(
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
ggml_cuda_set_peer_access(ne11);
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
@ -8781,16 +8784,21 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
const int64_t nb11 = src1->nb[1];
const int64_t nb1 = dst->nb[1];
const struct ggml_tensor * ids = src0;
const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = ((int32_t *) dst->op_params)[1];
std::vector<char> ids_host(ggml_nbytes(ids));
const cudaStream_t stream = g_cudaStreams[g_main_device][0];
if (ids->backend == GGML_BACKEND_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
} else {
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
}
@ -8804,37 +8812,93 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
src1_row.ne[1] = 1;
dst_row.ne[1] = 1;
src1_row.nb[2] = src1_row.nb[1];
dst_row.nb[2] = dst_row.nb[1];
src1_row.nb[3] = src1_row.nb[1];
dst_row.nb[3] = dst_row.nb[1];
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char * src1_original = (char *) src1_extra->data_device[g_main_device];
char * dst_original = (char *) dst_extra->data_device[g_main_device];
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
if (src1->ne[1] == 1) {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
src1_row.data = (char *) src1->data + i01*src1->nb[1];
src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
dst_row.data = (char *) dst->data + i01*dst->nb[1];
dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
}
} else {
size_t as_src1, as_dst;
char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1);
char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst);
src1_row_extra.data_device[g_main_device] = src1_contiguous;
dst_row_extra.data_device[g_main_device] = dst_contiguous;
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) {
continue;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
}
if (num_src1_rows == 0) {
continue;
}
src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) {
continue;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1,
nb1, cudaMemcpyDeviceToDevice, stream));
num_src1_rows++;
}
}
ggml_cuda_pool_free(src1_contiguous, as_src1);
ggml_cuda_pool_free(dst_contiguous, as_dst);
}
}
@ -9370,6 +9434,10 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
return false;
}
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
}
if (params->ith != 0) {
return true;
}