convert_hf : faster lazy safetensors (#8482)

* convert_hf : faster lazy safetensors

This makes '--dry-run' much, much faster.

* convert_hf : fix memory leak in lazy MoE conversion

The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
This commit is contained in:
compilade 2024-07-15 23:13:10 -04:00 committed by GitHub
parent 97bdd26eee
commit 7acfd4e8d5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 65 additions and 60 deletions

View File

@ -148,7 +148,14 @@ class Model:
tensor_names_from_parts.update(model_part.keys())
for name in model_part.keys():
data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
if self.is_safetensors:
if self.lazy:
data = model_part.get_slice(name)
data = LazyTorchTensor.from_safetensors_slice(data)
else:
data = model_part.get_tensor(name)
else:
data = model_part[name]
if self.lazy:
data = LazyTorchTensor.from_eager(data)
yield name, data
@ -3424,19 +3431,46 @@ class LazyTorchTensor(gguf.LazyBase):
torch.float32: np.float32,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
lazy=self._lazy,
args=(self,),
func=(lambda s: s[0].numpy())
func=(lambda s: s.numpy())
)
@classmethod
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
@ -3447,7 +3481,7 @@ class LazyTorchTensor(gguf.LazyBase):
if func is torch.Tensor.numpy:
return args[0].numpy()
return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
return cls._wrap_fn(func)(*args, **kwargs)
def parse_args() -> argparse.Namespace:

View File

@ -3,7 +3,6 @@ from abc import ABC, ABCMeta, abstractmethod
import logging
from typing import Any, Callable
from collections import deque
import numpy as np
from numpy.typing import DTypeLike
@ -74,20 +73,18 @@ class LazyBase(ABC, metaclass=LazyMeta):
_tensor_type: type
_meta: Any
_data: Any | None
_lazy: deque[LazyBase] # shared within a graph, to avoid deep recursion when making eager
_args: tuple
_func: Callable[[tuple], Any] | None
_kwargs: dict[str, Any]
_func: Callable[[Any], Any] | None
def __init__(self, *, meta: Any, data: Any | None = None, lazy: deque[LazyBase] | None = None, args: tuple = (), func: Callable[[tuple], Any] | None = None):
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
super().__init__()
self._meta = meta
self._data = data
self._lazy = lazy if lazy is not None else deque()
self._args = args
self._kwargs = kwargs if kwargs is not None else {}
self._func = func
assert self._func is not None or self._data is not None
if self._data is None:
self._lazy.append(self)
def __init_subclass__(cls) -> None:
if "_tensor_type" not in cls.__dict__:
@ -117,6 +114,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
args = ((use_self,) if use_self is not None else ()) + args
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
# TODO: maybe handle tensors in kwargs too
if isinstance(meta_noop, bool) and not meta_noop:
try:
@ -140,23 +138,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
class CollectSharedLazy:
# emulating a static variable
shared_lazy: None | deque[LazyBase] = None
@staticmethod
def collect_replace(t: LazyBase):
if CollectSharedLazy.shared_lazy is None:
CollectSharedLazy.shared_lazy = t._lazy
else:
CollectSharedLazy.shared_lazy.extend(t._lazy)
t._lazy = CollectSharedLazy.shared_lazy
LazyBase._recurse_apply(args, CollectSharedLazy.collect_replace)
shared_lazy = CollectSharedLazy.shared_lazy
return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs))
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
else:
del res # not needed
# non-tensor return likely relies on the contents of the args
@ -168,26 +150,18 @@ class LazyBase(ABC, metaclass=LazyMeta):
@classmethod
def to_eager(cls, t: Any) -> Any:
def simple_to_eager(_t: LazyBase) -> Any:
def already_eager_to_eager(_t: LazyBase) -> Any:
assert _t._data is not None
if _t._data is not None:
return _t._data
while _t._data is None:
lt = _t._lazy.popleft()
if lt._data is not None:
# Lazy tensor did not belong in the lazy queue.
# Weirdly only happens with Bloom models...
# likely because tensors aren't unique in the queue.
# The final output is still the same as in eager mode,
# so it's safe to ignore this.
continue
assert lt._func is not None
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
lt._data = lt._func(lt._args)
# NOTE: there's a recursion limit in Python (usually 1000)
assert _t._func is not None
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
_t._data = _t._func(*_t._args, **_t._kwargs)
# sanity check
assert lt._data is not None
assert lt._data.dtype == lt._meta.dtype
assert lt._data.shape == lt._meta.shape
assert _t._data is not None
assert _t._data.dtype == _t._meta.dtype
assert _t._data.shape == _t._meta.shape
return _t._data
@ -206,7 +180,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
@classmethod
def from_eager(cls, t: Any) -> Any:
if type(t) is cls:
# already eager
# already lazy
return t
elif isinstance(t, cls._tensor_type):
return cls(meta=cls.eager_to_meta(t), data=t)
@ -228,8 +202,7 @@ class LazyNumpyTensor(LazyBase):
def astype(self, dtype, *args, **kwargs):
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
full_args = (self, dtype,) + args
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
def tofile(self, *args, **kwargs):
eager = LazyNumpyTensor.to_eager(self)

View File

@ -602,13 +602,11 @@ class TensorNameMap:
for tensor, keys in self.block_mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]:
continue
# TODO: make this configurable
n_experts = 160
for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
key = key.format(bid = bid, xid = xid)
key = key.format(bid = bid)
self.mapping[key] = (tensor, tensor_name)
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: