tunning: check GPU offloading before loading model

This commit is contained in:
mqy 2023-06-15 14:06:11 +08:00
parent bb590f1482
commit 7c05049f8b
4 changed files with 25 additions and 19 deletions

View File

@ -435,6 +435,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
process_escapes(params.prompt); process_escapes(params.prompt);
} }
#ifdef GGML_USE_TUNE
if (params.n_gpu_layers > 0) {
if (params.tune || !params.tune_file.empty()) {
fprintf(stderr, "[tune] error: tunning and GPU offloading cannot be used at the same time, abort.\n");
exit(1);
}
}
#endif
return true; return true;
} }

View File

@ -159,7 +159,7 @@ int main(int argc, char ** argv) {
} }
#ifdef GGML_USE_TUNE #ifdef GGML_USE_TUNE
if (params.tune || !params.tune_file.empty()){ if (params.tune || !params.tune_file.empty()) {
bool ok = llama_mulmat_tune(ctx, params.n_threads, params.tune, params.tune_file.c_str()); bool ok = llama_mulmat_tune(ctx, params.n_threads, params.tune, params.tune_file.c_str());
if (!ok || (params.tune && !params.tune_file.empty())) { if (!ok || (params.tune && !params.tune_file.empty())) {
llama_free(ctx); llama_free(ctx);

View File

@ -104,7 +104,7 @@ const struct ggml_task_profile *ggml_mulmat_tune_select_task_profile(
prof->stages[i].backend); prof->stages[i].backend);
} }
printf( printf(
"\n[mulmat tune] M: %3d, N: %5d, K: %5d, backends of the " "\n[tune] M: %3d, N: %5d, K: %5d, backends of the "
"fastest profile: %s %s %s\n", "fastest profile: %s %s %s\n",
M, N, K, names[0], names[1], names[2]); M, N, K, names[0], names[1], names[2]);
#endif #endif
@ -358,7 +358,7 @@ bool ggml_mulmat_tune_validate(const struct ggml_mulmat_tune *tune,
bool ok = ggml_mulmat_tune_validate_internal(tune, model, ftype, n_threads, bool ok = ggml_mulmat_tune_validate_internal(tune, model, ftype, n_threads,
errbuf, sizeof(errbuf)); errbuf, sizeof(errbuf));
if (!ok) { if (!ok) {
fprintf(stderr, "[mulmat tune] error: %s. run bench again.\n", errbuf); fprintf(stderr, "[tune] error: %s. run bench again.\n", errbuf);
} }
return ok; return ok;
@ -371,7 +371,7 @@ bool ggml_mulmat_tune_read_data(struct ggml_mulmat_tune *tune, FILE *fp) {
} }
if (tune->version != GGML_MULMAT_TUNE_VERSION) { if (tune->version != GGML_MULMAT_TUNE_VERSION) {
fprintf(stderr, "[mulmat tune] version mismatch, run bench again\n"); fprintf(stderr, "[tune] version mismatch, run bench again\n");
return false; return false;
} }
@ -396,7 +396,7 @@ bool ggml_mulmat_tune_read_data(struct ggml_mulmat_tune *tune, FILE *fp) {
(shape->n_profiles * shape->m_num); (shape->n_profiles * shape->m_num);
shape->items = malloc(item_size); shape->items = malloc(item_size);
if (shape->items == NULL) { if (shape->items == NULL) {
fprintf(stderr, "[mulmat tune] failed to allocate memory\n"); fprintf(stderr, "[tune] failed to allocate memory\n");
return false; return false;
} }
memset(shape->items, 0, item_size); memset(shape->items, 0, item_size);
@ -708,7 +708,7 @@ static size_t ggml_mulmat_allocate_wdata(int N, int K, char **wdata) {
if (!buf) { if (!buf) {
fprintf(stderr, fprintf(stderr,
"[mulmat tune] error: failed to allocate %zu MiB memory", "[tune] error: failed to allocate %zu MiB memory",
sz / 1024 / 1024); sz / 1024 / 1024);
return 0; return 0;
} }
@ -745,7 +745,7 @@ bool ggml_mulmat_tune_bench(struct ggml_mulmat_tune *tune,
int n_backends = ggml_mulmat_tune_get_builtin_task_backends(backends); int n_backends = ggml_mulmat_tune_get_builtin_task_backends(backends);
if (n_backends < 2) { if (n_backends < 2) {
fprintf(stderr, fprintf(stderr,
"[mulmat tune] error: this program was not built with BLAS.\n"); "[tune] error: this program was not built with BLAS.\n");
return false; return false;
} }
@ -770,7 +770,7 @@ bool ggml_mulmat_tune_bench(struct ggml_mulmat_tune *tune,
} }
fprintf(stdout, fprintf(stdout,
"[mulmat tune] model: %s, ggml ftype: %d, " "[tune] model: %s, ggml ftype: %d, "
"n_pass: %d, n_threads: %d, n_shapes: %d, backends: %s\n", "n_pass: %d, n_threads: %d, n_shapes: %d, backends: %s\n",
params->model.name, params->model.ftype, params->n_pass, params->model.name, params->model.ftype, params->n_pass,
params->n_threads, tune->n_shapes, buf); params->n_threads, tune->n_shapes, buf);
@ -871,7 +871,7 @@ bool ggml_mulmat_tune_bench(struct ggml_mulmat_tune *tune,
ggml_threading_stop(thrd_ctx); ggml_threading_stop(thrd_ctx);
fprintf(stdout, "[mulmat tune] done, elapsed time: %d seconds.\n", fprintf(stdout, "[tune] done, elapsed time: %d seconds.\n",
(int)(ggml_time_ms() - t0) / 1000); (int)(ggml_time_ms() - t0) / 1000);
// output // output
@ -880,7 +880,7 @@ bool ggml_mulmat_tune_bench(struct ggml_mulmat_tune *tune,
FILE *fp = fopen(params->fname, "w"); FILE *fp = fopen(params->fname, "w");
if (!fp) { if (!fp) {
fprintf(stderr, fprintf(stderr,
"[mulmat tune] warn: failed to open file `%s`, print to " "[tune] warn: failed to open file `%s`, print to "
"console instead\n\n", "console instead\n\n",
params->fname); params->fname);
params->output_console = 1; params->output_console = 1;
@ -889,12 +889,12 @@ bool ggml_mulmat_tune_bench(struct ggml_mulmat_tune *tune,
fclose(fp); fclose(fp);
if (ok) { if (ok) {
fprintf(stdout, "[mulmat tune] data was written to `%s`\n", fprintf(stdout, "[tune] data was written to `%s`\n",
params->fname); params->fname);
} else { } else {
fprintf( fprintf(
stderr, stderr,
"[mulmat tune] warn: failed to write file `%s`, print to " "[tune] warn: failed to write file `%s`, print to "
"console instead\n\n", "console instead\n\n",
params->fname); params->fname);
params->output_console = 1; params->output_console = 1;

View File

@ -2745,11 +2745,9 @@ struct llama_context * llama_init_from_file(
#ifdef GGML_USE_TUNE #ifdef GGML_USE_TUNE
bool llama_mulmat_tune(struct llama_context *ctx, int n_threads, bool tune, const char *fname) { bool llama_mulmat_tune(struct llama_context *ctx, int n_threads, bool tune, const char *fname) {
GGML_ASSERT (ctx->model.n_gpu_layers == 0);
printf("\n"); printf("\n");
if (ctx->model.n_gpu_layers != 0) {
fprintf(stderr, "[mulmat tune] error: is disabled by GPU offloading\n");
return false;
}
const char *model_name = llama_model_type_name(ctx->model.type); const char *model_name = llama_model_type_name(ctx->model.type);
@ -2855,7 +2853,7 @@ bool llama_mulmat_tune(struct llama_context *ctx, int n_threads, bool tune, cons
if (!empty_fname) { if (!empty_fname) {
FILE *fp = fopen(fname, "r"); FILE *fp = fopen(fname, "r");
if (!fp) { if (!fp) {
fprintf(stderr, "[mulmat tune] failed to open file %s.\n", fprintf(stderr, "[tune] failed to open file %s.\n",
fname); fname);
} else { } else {
bool ok = ggml_mulmat_tune_read_data(ctx->tune, fp); bool ok = ggml_mulmat_tune_read_data(ctx->tune, fp);
@ -2863,12 +2861,12 @@ bool llama_mulmat_tune(struct llama_context *ctx, int n_threads, bool tune, cons
if (!ok) { if (!ok) {
fprintf(stderr, fprintf(stderr,
"[mulmat tune] failed to read data from %s\n", "[tune] failed to read data from %s\n",
fname); fname);
return false; return false;
} }
fprintf(stderr, "[mulmat tune] loaded data from %s\n", fname); fprintf(stderr, "[tune] loaded data from %s\n", fname);
ok = ggml_mulmat_tune_validate(ctx->tune, model_name, ggml_ftype, params.n_threads); ok = ggml_mulmat_tune_validate(ctx->tune, model_name, ggml_ftype, params.n_threads);
if (!ok) { if (!ok) {