add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)

* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
leejet 2024-03-03 20:23:52 +08:00 committed by Georgi Gerganov
parent 82f3e668ad
commit 7d43c585dc
No known key found for this signature in database
GPG Key ID: BF970631944C16B7
6 changed files with 550 additions and 52 deletions

View File

@ -616,6 +616,8 @@ static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + Q
#define CUDA_UPSCALE_BLOCK_SIZE 256 #define CUDA_UPSCALE_BLOCK_SIZE 256
#define CUDA_CONCAT_BLOCK_SIZE 256 #define CUDA_CONCAT_BLOCK_SIZE 256
#define CUDA_PAD_BLOCK_SIZE 256 #define CUDA_PAD_BLOCK_SIZE 256
#define CUDA_ARANGE_BLOCK_SIZE 256
#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
#define CUDA_ACC_BLOCK_SIZE 256 #define CUDA_ACC_BLOCK_SIZE 256
#define CUDA_IM2COL_BLOCK_SIZE 256 #define CUDA_IM2COL_BLOCK_SIZE 256
#define CUDA_POOL2D_BLOCK_SIZE 256 #define CUDA_POOL2D_BLOCK_SIZE 256
@ -990,17 +992,21 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y; blockIdx.z * ne0 * gridDim.y;
dst[offset_dst] = x[offset_src]; dst[offset_dst] = x[offset_src];
} else { } else {
int offset_src = int offset_src =
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
(blockIdx.z - ne02) * ne0 * gridDim.y; (blockIdx.z - ne02) * ne0 * gridDim.y;
dst[offset_dst] = y[offset_src]; dst[offset_dst] = y[offset_src];
} }
} }
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int nb02, const int scale_factor) { static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
// blockIdx.z: idx of ne02*ne03
// blockIdx.y: idx of ne01*scale_factor aka ne1
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
// ne00xne01: ne00 * ne01
int ne0 = ne00 * scale_factor; int ne0 = ne00 * scale_factor;
int nidx = threadIdx.x + blockIdx.x * blockDim.x; int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) { if (nidx >= ne0) {
@ -1012,7 +1018,7 @@ static __global__ void upscale_f32(const float * x, float * dst, const int ne00,
int offset_src = int offset_src =
i00 + i00 +
i01 * ne00 + i01 * ne00 +
blockIdx.z * nb02; blockIdx.z * ne00xne01;
int offset_dst = int offset_dst =
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
@ -1020,7 +1026,10 @@ static __global__ void upscale_f32(const float * x, float * dst, const int ne00,
dst[offset_dst] = x[offset_src]; dst[offset_dst] = x[offset_src];
} }
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02) { static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
// blockIdx.y: idx of ne1
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x; int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) { if (nidx >= ne0) {
return; return;
@ -1031,19 +1040,53 @@ static __global__ void pad_f32(const float * x, float * dst, const int ne0, cons
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y; blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02) { if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
int offset_src = int offset_src =
nidx + nidx +
blockIdx.y * ne00 + blockIdx.y * ne00 +
blockIdx.z * ne00 * ne01; blockIdx.z * ne00 * ne01;
dst[offset_dst] = x[offset_src]; dst[offset_dst] = x[offset_src];
} else { } else {
dst[offset_dst] = 0.0f; dst[offset_dst] = 0.0f;
} }
} }
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
dst[nidx] = start + step * nidx;
}
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
// blockIDx.y: idx of timesteps->ne[0]
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
int i = blockIdx.y;
int j = threadIdx.x + blockIdx.x * blockDim.x;
float * embed_data = (float *)((char *)dst + i*nb1);
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
embed_data[dim] = 0.f;
}
int half = dim / 2;
if (j >= half) {
return;
}
float timestep = timesteps[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
template <int block_size> template <int block_size>
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) { static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
// blockIdx.x: num_groups idx
// threadIdx.x: block_size idx
int start = blockIdx.x * group_size; int start = blockIdx.x * group_size;
int end = start + group_size; int end = start + group_size;
@ -6448,7 +6491,7 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) { const int nb12, const int nb13) {
const int i = blockDim.x*blockIdx.x + threadIdx.x; const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) { if (i >= ne) {
return; return;
@ -6456,17 +6499,17 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets // then combine those indices with the corresponding byte offsets to get the total offsets
const int i03 = i/(ne00 * ne01 * ne02); const int64_t i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12); const int64_t i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13; const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset); cpy_1(cx + x_offset, cdst + dst_offset);
} }
@ -6956,23 +6999,23 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
template <typename T> template <typename T>
static __global__ void im2col_kernel( static __global__ void im2col_kernel(
const float * x, T * dst, int batch_offset, const float * x, T * dst, int64_t batch_offset,
int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW, int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
int s0, int s1, int p0, int p1, int d0, int d1) { int s0, int s1, int p0, int p1, int d0, int d1) {
const int i = threadIdx.x + blockIdx.x * blockDim.x; const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= pelements) { if (i >= pelements) {
return; return;
} }
const int ksize = OW * (KH > 1 ? KW : 1); const int64_t ksize = OW * (KH > 1 ? KW : 1);
const int kx = i / ksize; const int64_t kx = i / ksize;
const int kd = kx * ksize; const int64_t kd = kx * ksize;
const int ky = (i - kd) / OW; const int64_t ky = (i - kd) / OW;
const int ix = i % OW; const int64_t ix = i % OW;
const int oh = blockIdx.y; const int64_t oh = blockIdx.y;
const int batch = blockIdx.z / IC; const int64_t batch = blockIdx.z / IC;
const int ic = blockIdx.z % IC; const int64_t ic = blockIdx.z % IC;
const int64_t iiw = ix * s0 + kx * d0 - p0; const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = oh * s1 + ky * d1 - p1; const int64_t iih = oh * s1 + ky * d1 - p1;
@ -7298,19 +7341,33 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, const
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02); concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
} }
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int scale_factor, cudaStream_t stream) { static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
const int scale_factor, cudaStream_t stream) {
int ne0 = (ne00 * scale_factor); int ne0 = (ne00 * scale_factor);
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE; int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02); dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor); upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
} }
static void pad_f32_cuda(const float * x, float * dst, static void pad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02, const int ne00, const int ne01, const int ne02, const int ne03,
const int ne0, const int ne1, const int ne2, cudaStream_t stream) { const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2); dim3 gridDim(num_blocks, ne1, ne2*ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02); pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
}
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
}
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
const int dim, const int max_period, cudaStream_t stream) {
int half_ceil = (dim + 1) / 2;
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne00, 1);
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
} }
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) { static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
@ -8443,8 +8500,8 @@ static void soft_max_f32_cuda(const float * x, const float * mask, const float *
template <typename T> template <typename T>
static void im2col_cuda(const float* x, T* dst, static void im2col_cuda(const float* x, T* dst,
int IW, int IH, int OW, int OH, int KW, int KH, int IC, int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int batch, int batch_offset, int offset_delta, int64_t batch, int64_t batch_offset, int64_t offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) { int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
const int parallel_elements = OW * KW * KH; const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE; const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
@ -9123,7 +9180,7 @@ static void ggml_cuda_op_group_norm(
int num_groups = dst->op_params[0]; int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups); int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream); group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -9156,7 +9213,7 @@ static void ggml_cuda_op_upscale(
const int scale_factor = dst->op_params[0]; const int scale_factor = dst->op_params[0];
upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream); upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -9172,8 +9229,49 @@ static void ggml_cuda_op_pad(
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
pad_f32_cuda(src0_dd, dst_dd, pad_f32_cuda(src0_dd, dst_dd,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream); dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
}
static void ggml_cuda_op_arange(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start;
float stop;
float step;
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
int64_t steps = (int64_t)ceil((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
(void) src0;
(void) src1;
(void) src0_dd;
(void) src1_dd;
}
static void ggml_cuda_op_timestep_embedding(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
(void) src1; (void) src1;
(void) dst; (void) dst;
@ -10458,6 +10556,45 @@ static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, gg
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
} }
static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
float * src1_ddf = nullptr;
float * dst_ddf = nullptr;
cuda_pool_alloc<float> dst_f;
ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
if (dst_on_device) {
dst_ddf = (float *) dst_extra->data_device[g_main_device];
} else {
dst_ddf = dst_f.alloc(ggml_nelements(dst));
}
// do the computation
ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
CUDA_CHECK(cudaGetLastError());
// copy dst to host if necessary
if (!dst_on_device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaDeviceSynchronize());
}
}
static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_timestep_embedding);
}
static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
} }
@ -11358,6 +11495,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
case GGML_OP_PAD: case GGML_OP_PAD:
func = ggml_cuda_pad; func = ggml_cuda_pad;
break; break;
case GGML_OP_ARANGE:
func = ggml_cuda_arange;
break;
case GGML_OP_TIMESTEP_EMBEDDING:
func = ggml_cuda_timestep_embedding;
break;
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
func = ggml_cuda_leaky_relu; func = ggml_cuda_leaky_relu;
break; break;
@ -12253,6 +12396,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_GROUP_NORM: case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
return true; return true;
default: default:

View File

@ -163,6 +163,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_IM2COL_F32, GGML_METAL_KERNEL_TYPE_IM2COL_F32,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32, GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32, GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
@ -569,6 +571,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
@ -697,6 +701,8 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
return false; return false;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:
case GGML_OP_PAD: case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
return true; return true;
@ -1091,7 +1097,8 @@ static bool ggml_metal_graph_compute(
{ {
GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) dst->op_params; float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
int64_t n = ggml_nelements(dst); int64_t n = ggml_nelements(dst);
@ -1250,11 +1257,15 @@ static bool ggml_metal_graph_compute(
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
} }
const float scale = ((float *) dst->op_params)[0]; float scale;
const float max_bias = ((float *) dst->op_params)[1]; float max_bias;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1]; const int64_t nrows_y = src0->ne[1];
const uint32_t n_head_kv = nrows_x/nrows_y; const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
@ -2086,6 +2097,7 @@ static bool ggml_metal_graph_compute(
//const int n_past = ((int32_t *) dst->op_params)[0]; //const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1]; const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias; float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
@ -2300,6 +2312,50 @@ static bool ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start;
float step;
memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&step, ((int32_t *) dst->op_params) + 2, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
[encoder setBytes:&start length:sizeof(start) atIndex:2];
[encoder setBytes:&step length:sizeof(step) atIndex:3];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
const int half = dim / 2;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
const int nth = MIN(1024, half);
[encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);

View File

@ -1959,6 +1959,49 @@ kernel void kernel_pad_f32(
} }
} }
kernel void kernel_arange_f32(
device char * dst,
constant int64_t & ne0,
constant float & start,
constant float & step,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
device float * dst_ptr = (device float *) dst;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
dst_ptr[i0] = start + step * i0;
}
}
kernel void kernel_timestep_embedding_f32(
device const char * src0,
device char * dst,
constant uint64_t & nb1,
constant int & dim,
constant int & max_period,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
int i = tgpig.x;
device float * embed_data = (device float *)(dst + i*nb1);
int half_ = dim / 2;
for (int j = tpitg.x; j < half_; j += ntg.x) {
float timestep = ((device float *)src0)[i];
float freq = (float)exp(-log((float)max_period) * j / half_);
float arg = timestep * freq;
embed_data[j ] = cos(arg);
embed_data[j + half_] = sin(arg);
}
if (dim % 2 != 0 && tpitg.x == 0) {
embed_data[dim] = 0.f;
}
}
// bitonic sort implementation following the CUDA kernels as reference // bitonic sort implementation following the CUDA kernels as reference
typedef void (argsort_t)( typedef void (argsort_t)(
device const float * x, device const float * x,

207
ggml.c
View File

@ -1822,6 +1822,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"POOL_2D", "POOL_2D",
"UPSCALE", "UPSCALE",
"PAD", "PAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT", "ARGSORT",
"LEAKY_RELU", "LEAKY_RELU",
@ -1850,7 +1852,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -1908,6 +1910,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"pool_2d(x)", "pool_2d(x)",
"upscale(x)", "upscale(x)",
"pad(x)", "pad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)", "argsort(x)",
"leaky_relu(x)", "leaky_relu(x)",
@ -1936,7 +1940,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
}; };
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -2895,11 +2899,21 @@ static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_
return ((const int32_t *)(tensor->op_params))[i]; return ((const int32_t *)(tensor->op_params))[i];
} }
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value; ((int32_t *)(tensor->op_params))[i] = value;
} }
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor)); memset(tensor->data, 0, ggml_nbytes(tensor));
return tensor; return tensor;
@ -5898,6 +5912,55 @@ struct ggml_tensor * ggml_upscale(
return ggml_upscale_impl(ctx, a, scale_factor); return ggml_upscale_impl(ctx, a, scale_factor);
} }
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
result->op = GGML_OP_ARANGE;
ggml_set_op_params_f32(result, 0, start);
ggml_set_op_params_f32(result, 1, stop);
ggml_set_op_params_f32(result, 2, step);
return result;
}
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
bool is_node = false;
if (timesteps->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
int actual_dim = dim;
if (dim % 2 != 0) {
actual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
ggml_set_op_params_i32(result, 0, dim);
ggml_set_op_params_i32(result, 1, max_period);
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = timesteps;
return result;
}
// ggml_argsort // ggml_argsort
struct ggml_tensor * ggml_argsort( struct ggml_tensor * ggml_argsort(
@ -10231,7 +10294,7 @@ static void ggml_compute_forward_group_norm_f32(
int n_channels = src0->ne[2]; int n_channels = src0->ne[2];
int n_groups = dst->op_params[0]; int n_groups = dst->op_params[0];
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups; int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
for (int i = ith; i < n_groups; i+=nth) { for (int i = ith; i < n_groups; i += nth) {
int start = i * n_channels_per_group; int start = i * n_channels_per_group;
int end = start + n_channels_per_group; int end = start + n_channels_per_group;
if (end > n_channels) { if (end > n_channels) {
@ -10245,28 +10308,32 @@ static void ggml_compute_forward_group_norm_f32(
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) { for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00]; sumr += (ggml_float)x[i00];
} }
sum += sumr;
} }
} }
float mean = sum / (ne00 * ne01 * step); const float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) { for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) { for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean; float v = x[i00] - mean;
y[i00] = v; y[i00] = v;
sum2 += (ggml_float)(v * v); sumr += (ggml_float)(v * v);
} }
sum2 += sumr;
} }
} }
float variance = sum2 / (ne00 * ne01 * step); const float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps); const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) { for (int64_t i02 = start; i02 < end; i02++) {
@ -13547,6 +13614,106 @@ static void ggml_compute_forward_pad(
} }
} }
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const float start = ggml_get_op_params_f32(dst, 0);
const float stop = ggml_get_op_params_f32(dst, 1);
const float step = ggml_get_op_params_f32(dst, 2);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
static void ggml_compute_forward_arange(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = ggml_get_op_params_i32(dst, 0);
const int max_period = ggml_get_op_params_i32(dst, 1);
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
static void ggml_compute_forward_timestep_embedding(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort // ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32( static void ggml_compute_forward_argsort_f32(
@ -15615,6 +15782,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_pad(params, tensor); ggml_compute_forward_pad(params, tensor);
} break; } break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
ggml_compute_forward_timestep_embedding(params, tensor);
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
ggml_compute_forward_argsort(params, tensor); ggml_compute_forward_argsort(params, tensor);
@ -16617,6 +16792,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
@ -17368,6 +17551,14 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{ {
n_tasks = n_threads; n_tasks = n_threads;
} break; } break;
case GGML_OP_ARANGE:
{
n_tasks = n_threads;
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
n_tasks = n_threads; n_tasks = n_threads;

17
ggml.h
View File

@ -454,6 +454,8 @@ extern "C" {
GGML_OP_POOL_2D, GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD, GGML_OP_PAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT, GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU, GGML_OP_LEAKY_RELU,
@ -1661,6 +1663,15 @@ extern "C" {
int p2, int p2,
int p3); int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
GGML_API struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period);
// sort rows // sort rows
enum ggml_sort_order { enum ggml_sort_order {
GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_ASC,
@ -1672,6 +1683,12 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_sort_order order); enum ggml_sort_order order);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row // top k elements per row
GGML_API struct ggml_tensor * ggml_top_k( GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx, struct ggml_context * ctx,

View File

@ -1412,6 +1412,50 @@ struct test_pad : public test_case {
} }
}; };
// GGML_OP_ARANGE
struct test_arange : public test_case {
const ggml_type type;
const float start;
const float stop;
const float step;
std::string vars() override {
return VARS_TO_STR4(type, start, stop, step);
}
test_arange(ggml_type type = GGML_TYPE_F32,
float start = 0.f, float stop = 10.f, float step = 1.f)
: type(type), start(start), stop(stop), step(step) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * out = ggml_arange(ctx, start, stop, step);
return out;
}
};
// GGML_OP_TIMESTEP_EMBEDDING
struct test_timestep_embedding : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const int dim;
const int max_period;
std::string vars() override {
return VARS_TO_STR4(type, ne_a, dim, max_period);
}
test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
int dim = 320, int max_period=10000)
: type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
return out;
}
};
// GGML_OP_LEAKY_RELU // GGML_OP_LEAKY_RELU
struct test_leaky_relu : public test_case { struct test_leaky_relu : public test_case {
const ggml_type type; const ggml_type type;
@ -2126,6 +2170,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_group_norm()); test_cases.emplace_back(new test_group_norm());
test_cases.emplace_back(new test_acc()); test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_pad()); test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_arange());
test_cases.emplace_back(new test_timestep_embedding());
test_cases.emplace_back(new test_leaky_relu()); test_cases.emplace_back(new test_leaky_relu());
// these tests are disabled to save execution time, but they can be handy for debugging // these tests are disabled to save execution time, but they can be handy for debugging