convert-llama-h5-to-gguf.py : map tensor names

This commit is contained in:
klosax 2023-08-09 00:52:16 +02:00 committed by GitHub
parent f4d137d98c
commit 7d5f4522dd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,8 @@
# Quick and dirty HF llama --> gguf conversion, GQA/70b wont work # Quick and dirty HF llama --> gguf conversion, GQA/70b wont work
import gguf import gguf
import gguf_tensor_map as tmap
import os
import sys import sys
import struct import struct
import json import json
@ -12,7 +14,6 @@ from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any] #NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9 # compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
@ -32,6 +33,7 @@ if len(sys.argv) < 3:
# output in the same directory as the model # output in the same directory as the model
dir_model = sys.argv[1] dir_model = sys.argv[1]
fname_out = sys.argv[1] + "/ggml-model.bin" fname_out = sys.argv[1] + "/ggml-model.bin"
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types # possible tensor data types
@ -49,6 +51,8 @@ if len(sys.argv) > 2:
sys.exit(1) sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f) hparams = json.load(f)
@ -62,32 +66,34 @@ list_vars = model.state_dict()
gguf_writer = gguf.GGUFWriter.open(fname_out) gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: add key-values, metadata") print("gguf: get model metadata")
llm_arch = "llama" llm_arch = "llama"
head_count = hparams["num_attention_heads"]
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name("llama2-7b") gguf_writer.add_name("llama2-7b")
gguf_writer.add_description("gguf test model") gguf_writer.add_description("gguf test model")
gguf_writer.add_architecture(llm_arch) gguf_writer.add_architecture(llm_arch)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_layer_count(llm_arch, hparams["num_hidden_layers"]) gguf_writer.add_layer_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(llm_arch, hparams["num_attention_heads"]) gguf_writer.add_head_count(llm_arch, head_count)
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
# TOKENIZATION # TOKENIZATION
print("gguf: add key-values, tokenizer") print("gguf: get tokenizer metadata")
tokens: List[str] = [] tokens: List[str] = []
scores: List[float] = [] scores: List[float] = []
if Path(dir_model + "/tokenizer.model").is_file(): if Path(dir_model + "/tokenizer.model").is_file():
# vocab type sentencepiece # vocab type sentencepiece
print("gguf: adding sentencepiece tokenizer vocab") print("gguf: get sentencepiece tokenizer vocab and scores")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
@ -119,7 +125,7 @@ if Path(dir_model + "/tokenizer.json").is_file():
tokenizer = json.load(f) tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: adding special token ids") print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f) tokenizer_config = json.load(f)
@ -154,8 +160,10 @@ if Path(dir_model + "/tokenizer.json").is_file():
# TENSORS # TENSORS
tensor_map = tmap.get_tensor_map(block_count)
# tensor info # tensor info
print("gguf: add gguf tensor info") print("gguf: get tensor metadata")
for name in list_vars.keys(): for name in list_vars.keys():
data = list_vars[name].squeeze().numpy() data = list_vars[name].squeeze().numpy()
@ -166,45 +174,16 @@ for name in list_vars.keys():
# permute these # permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data, hparams["num_attention_heads"]) data = permute(data,head_count)
# chnage tensor name # map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
if name == "model.embed_tokens.weight": name = tensor_map[name[:-7]] + ".weight"
name = "tok_embeddings.weight" elif name.endswith(".bias") and name[:-5] in tensor_map:
elif name == "model.norm.weight": name = tensor_map[name[:-5]] + ".bias"
name = "norm.weight"
elif name == "lm_head.weight":
name = "output.weight"
else: else:
for i in range(80): # maximum number of layers print( "Can not map tensor '" + name + "'" )
if name == "model.layers." + str(i) + ".input_layernorm.weight": sys.exit()
name = "layers." + str(i) + ".attention_norm.weight"
break
if name == "model.layers." + str(i) + ".self_attn.q_proj.weight":
name = "layers." + str(i) + ".attention.wq.weight"
break
if name == "model.layers." + str(i) + ".self_attn.k_proj.weight":
name = "layers." + str(i) + ".attention.wk.weight"
break
if name == "model.layers." + str(i) + ".self_attn.v_proj.weight":
name = "layers." + str(i) + ".attention.wv.weight"
break
if name == "model.layers." + str(i) + ".self_attn.o_proj.weight":
name = "layers." + str(i) + ".attention.wo.weight"
break
if name == "model.layers." + str(i) + ".post_attention_layernorm.weight":
name = "layers." + str(i) + ".ffn_norm.weight"
break
if name == "model.layers." + str(i) + ".mlp.gate_proj.weight":
name = "layers." + str(i) + ".feed_forward.w1.weight"
break
if name == "model.layers." + str(i) + ".mlp.down_proj.weight":
name = "layers." + str(i) + ".feed_forward.w2.weight"
break
if name == "model.layers." + str(i) + ".mlp.up_proj.weight":
name = "layers." + str(i) + ".feed_forward.w3.weight"
break
n_dims = len(data.shape) n_dims = len(data.shape)
@ -227,9 +206,9 @@ for name in list_vars.keys():
print("gguf: write header") print("gguf: write header")
gguf_writer.write_header_to_file() gguf_writer.write_header_to_file()
print("gguf: write key-values") print("gguf: write metadata")
gguf_writer.write_kv_data_to_file() gguf_writer.write_kv_data_to_file()
print("gguf: write tensor info") print("gguf: write tensor metadata")
gguf_writer.write_ti_data_to_file() gguf_writer.write_ti_data_to_file()
# tensor data # tensor data
@ -237,17 +216,14 @@ print("gguf: write tensor data")
for name in list_vars.keys(): for name in list_vars.keys():
data = list_vars[name].squeeze().numpy() data = list_vars[name].squeeze().numpy()
# print("Process tensor: " + name + " with shape: ", data.shape)
# we don't need these # we don't need these
if name.endswith(".rotary_emb.inv_freq"): if name.endswith(".rotary_emb.inv_freq"):
# print(" Skip tensor: " + name)
continue continue
# permute these # permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
# print(" Permute tensor: " + name) data = permute(data, head_count)
data = permute(data, hparams["num_attention_heads"])
n_dims = len(data.shape) n_dims = len(data.shape)
@ -255,16 +231,13 @@ for name in list_vars.keys():
ftype_cur = 0 ftype_cur = 0
if ftype != 0: if ftype != 0:
if name.endswith(".weight") and n_dims == 2: if name.endswith(".weight") and n_dims == 2:
# print(" Converting to float16")
data = data.astype(np.float16) data = data.astype(np.float16)
ftype_cur = 1 ftype_cur = 1
else: else:
# print(" Converting to float32")
data = data.astype(np.float32) data = data.astype(np.float32)
ftype_cur = 0 ftype_cur = 0
else: else:
if data.dtype != np.float32: if data.dtype != np.float32:
# print(" Converting to float32")
data = data.astype(np.float32) data = data.astype(np.float32)
ftype_cur = 0 ftype_cur = 0
@ -273,5 +246,5 @@ for name in list_vars.keys():
gguf_writer.close() gguf_writer.close()
print("gguf: conversion done, output file: " + fname_out) print("gguf: model successfully exported to '" + fname_out + "'" )
print("") print("")