diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 08428ea3f..14b1ecf7d 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -439,6 +439,7 @@ static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullpt struct ggml_tensor_extra_gpu { void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs + bool copied; }; // this is faster on Windows @@ -4355,8 +4356,9 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, } // rope == RoPE == rotary positional embedding -static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale) { + +static __global__ void rope_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4365,8 +4367,11 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c const int row = blockDim.x*blockIdx.x + threadIdx.x; const int i = row*ncols + col; + const int i2 = row/p_delta_rows; - const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); + const int p = pos != nullptr ? pos[i2] : 0; + const float p0 = p * freq_scale; + const float theta = p0*powf(theta_scale, col/2); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4377,8 +4382,8 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c dst[i + 1] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale) { +static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4387,8 +4392,11 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco const int row = blockDim.x*blockIdx.x + threadIdx.x; const int i = row*ncols + col/2; + const int i2 = row/p_delta_rows; - const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); + const int p = pos != nullptr ? pos[i2] : 0; + const float p0 = p * freq_scale; + const float theta = p0*powf(theta_scale, col/2); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4399,8 +4407,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) { +static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, const int n_ctx) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int half_n_dims = ncols/4; @@ -4410,11 +4418,13 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol const int row = blockDim.y*blockIdx.y + threadIdx.y; const int i = row*ncols + col; + const int i2 = row/p_delta_rows; const float col_theta_scale = powf(theta_scale, col); - const float p = p0 + p_delta*(row/p_delta_rows); + // FIXME: this is likely wrong + const int p = pos != nullptr ? pos[i2] : 0; - const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale; + const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale; const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4424,7 +4434,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; - const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale; + const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale; const float sin_block_theta = sinf(block_theta); const float cos_block_theta = cosf(block_theta); @@ -5361,31 +5371,31 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons scale_f32<<>>(x, dst, scale, k); } -static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); - rope_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); + rope_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); } -static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); - rope_neox_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); + rope_neox_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); } -static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { +static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { GGML_ASSERT(ncols % 4 == 0); const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx); + rope_glm_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx); } static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, @@ -6069,9 +6079,10 @@ inline void ggml_cuda_op_rope( const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; + const int64_t ne2 = dst->ne[2]; const int64_t nrows = ggml_nrows(src0); - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -6082,19 +6093,37 @@ inline void ggml_cuda_op_rope( memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; + // const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(src1->ne[0] == ne2); + GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); + + int id; + CUDA_CHECK(cudaGetDevice(&id)); + + int * pos = nullptr; + if ((mode & 1) == 0) { + struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + pos = (int *) src1_extra->data_device[id]; + if (!src1_extra->copied) { + CUDA_CHECK(cudaMemcpyAsync(pos, src1->data, ggml_nbytes(src1), cudaMemcpyHostToDevice, main_stream)); + src1_extra->copied = true; + } + } const bool is_neox = mode & 2; const bool is_glm = mode & 4; // compute if (is_glm) { - rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, n_ctx, main_stream); + GGML_ASSERT(false); + rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream); } else if (is_neox) { GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); - rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream); + rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); } else { - rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, p0, freq_scale, ne01, theta_scale, main_stream); + rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); } (void) src1; diff --git a/llama.cpp b/llama.cpp index 5f40a9b5f..df0b39bfb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2708,6 +2708,7 @@ static struct ggml_cgraph * llm_build_llama( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; @@ -2719,6 +2720,7 @@ static struct ggml_cgraph * llm_build_llama( // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; @@ -3092,6 +3094,7 @@ static struct ggml_cgraph * llm_build_baichaun( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; @@ -3103,6 +3106,7 @@ static struct ggml_cgraph * llm_build_baichaun( // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data; @@ -3496,6 +3500,7 @@ static struct ggml_cgraph * llm_build_falcon( // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); ggml_allocr_alloc(lctx.alloc, KQ_pos); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) KQ_pos->data; @@ -3507,6 +3512,7 @@ static struct ggml_cgraph * llm_build_falcon( // shift the entire K-cache if needed if (do_rope_shift) { struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); ggml_allocr_alloc(lctx.alloc, K_shift); if (!ggml_allocr_is_measure(lctx.alloc)) { int * data = (int *) K_shift->data;