mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-13 14:29:52 +00:00
common : use common_ prefix for common library functions (#9805)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* common : use common_ prefix for common library functions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
0e9f760eb1
commit
7eee341bee
868
common/arg.cpp
868
common/arg.cpp
File diff suppressed because it is too large
Load Diff
44
common/arg.h
44
common/arg.h
@ -10,7 +10,7 @@
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct llama_arg {
|
||||
struct common_arg {
|
||||
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
|
||||
std::vector<const char *> args;
|
||||
const char * value_hint = nullptr; // help text or example for arg value
|
||||
@ -18,60 +18,60 @@ struct llama_arg {
|
||||
const char * env = nullptr;
|
||||
std::string help;
|
||||
bool is_sparam = false; // is current arg a sampling param?
|
||||
void (*handler_void) (gpt_params & params) = nullptr;
|
||||
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (gpt_params & params, int) = nullptr;
|
||||
void (*handler_void) (common_params & params) = nullptr;
|
||||
void (*handler_string) (common_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (common_params & params, int) = nullptr;
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, int)
|
||||
void (*handler)(common_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params)
|
||||
void (*handler)(common_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
|
||||
llama_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
llama_arg & set_env(const char * env);
|
||||
llama_arg & set_sparam();
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
common_arg & set_env(const char * env);
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
struct gpt_params_context {
|
||||
struct common_params_context {
|
||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||
gpt_params & params;
|
||||
std::vector<llama_arg> options;
|
||||
common_params & params;
|
||||
std::vector<common_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
gpt_params_context(gpt_params & params) : params(params) {}
|
||||
common_params_context(common_params & params) : params(params) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
// function to be used by test-arg-parser
|
||||
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
@ -362,10 +362,10 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_init() {
|
||||
void common_init() {
|
||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
|
||||
gpt_log_add(gpt_log_main(), level, "%s", text);
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}, NULL);
|
||||
|
||||
@ -378,7 +378,7 @@ void gpt_init() {
|
||||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||
}
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
std::string common_params_get_system_info(const common_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
||||
@ -493,7 +493,7 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
auto detokenized = common_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
@ -524,7 +524,7 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
@ -819,16 +819,16 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
llama_init_result iparams;
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else {
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
@ -863,7 +863,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
auto cparams = llama_context_params_from_gpt_params(params);
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
@ -876,7 +876,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||
|
||||
const auto cvec = llama_control_vector_load(params.control_vectors);
|
||||
const auto cvec = common_control_vector_load(params.control_vectors);
|
||||
if (cvec.n_embd == -1) {
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
@ -900,7 +900,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_lora_adapter_container loaded_la;
|
||||
common_lora_adapter_container loaded_la;
|
||||
loaded_la.path = la.path;
|
||||
loaded_la.scale = la.scale;
|
||||
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
|
||||
@ -913,7 +913,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
|
||||
}
|
||||
if (!params.lora_init_without_apply) {
|
||||
llama_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
@ -961,7 +961,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters) {
|
||||
llama_lora_adapter_clear(ctx);
|
||||
for (auto & la : lora_adapters) {
|
||||
if (la.scale != 0.0f) {
|
||||
@ -970,7 +970,7 @@ void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lor
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_model_params common_model_params_to_llama(const common_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
@ -1022,7 +1022,7 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
cparams.n_ctx = params.n_ctx;
|
||||
@ -1112,7 +1112,7 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
@ -1182,15 +1182,15 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct llama_load_model_from_url_headers {
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
llama_load_model_from_url_headers headers;
|
||||
common_load_model_from_url_headers headers;
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
|
||||
common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
@ -1326,7 +1326,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * model_url,
|
||||
const char * path_model,
|
||||
const char * hf_token,
|
||||
@ -1337,7 +1337,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_download_file(model_url, path_model, hf_token)) {
|
||||
if (!common_download_file(model_url, path_model, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@ -1390,7 +1390,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return llama_download_file(split_url, split_path, hf_token);
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
@ -1405,7 +1405,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return llama_load_model_from_file(path_model, params);
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * repo,
|
||||
const char * model,
|
||||
const char * path_model,
|
||||
@ -1425,12 +1425,12 @@ struct llama_model * llama_load_model_from_hf(
|
||||
model_url += "/resolve/main/";
|
||||
model_url += model;
|
||||
|
||||
return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * /*model_url*/,
|
||||
const char * /*path_model*/,
|
||||
const char * /*hf_token*/,
|
||||
@ -1439,7 +1439,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * /*repo*/,
|
||||
const char * /*model*/,
|
||||
const char * /*path_model*/,
|
||||
@ -1455,11 +1455,11 @@ struct llama_model * llama_load_model_from_hf(
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch) {
|
||||
void common_batch_clear(struct llama_batch & batch) {
|
||||
batch.n_tokens = 0;
|
||||
}
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
@ -1482,15 +1482,15 @@ void llama_batch_add(
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
@ -1509,7 +1509,7 @@ std::vector<llama_token> llama_tokenize(
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
@ -1525,7 +1525,7 @@ std::string llama_token_to_piece(const struct llama_context * ctx, llama_token t
|
||||
return piece;
|
||||
}
|
||||
|
||||
std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
@ -1545,15 +1545,15 @@ std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token>
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
bool llama_chat_verify_template(const std::string & tmpl) {
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & msgs,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
@ -1595,42 +1595,42 @@ std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<llama_chat_msg> chat_new(past_msg);
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::vector<llama_chat_msg> msgs = {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return llama_chat_apply_template(model, tmpl, msgs, true);
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
|
||||
@ -1653,7 +1653,7 @@ void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
|
||||
@ -1705,7 +1705,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
double sum = 0.0;
|
||||
|
||||
switch (embd_norm) {
|
||||
@ -1739,7 +1739,7 @@ void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm)
|
||||
}
|
||||
}
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
double sum = 0.0;
|
||||
double sum1 = 0.0;
|
||||
double sum2 = 0.0;
|
||||
@ -1765,8 +1765,8 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
ggml_context * ctx = nullptr;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
@ -1850,11 +1850,11 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
for (const auto & info : load_infos) {
|
||||
auto cur = llama_control_vector_load_one(info);
|
||||
auto cur = common_control_vector_load_one(info);
|
||||
|
||||
if (cur.n_embd == -1) {
|
||||
result.n_embd = -1;
|
||||
@ -1946,7 +1946,7 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
|
||||
}
|
||||
}
|
||||
|
||||
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||
const auto & sparams = params.sparams;
|
||||
|
||||
|
110
common/common.h
110
common/common.h
@ -24,12 +24,12 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct llama_lora_adapter_info {
|
||||
struct common_lora_adapter_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||||
struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
@ -39,7 +39,7 @@ extern char const * LLAMA_COMMIT;
|
||||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
struct common_control_vector_load_info;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
@ -82,14 +82,14 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum gpt_sampler_type {
|
||||
GPT_SAMPLER_TYPE_NONE = 0,
|
||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_NONE = 0,
|
||||
COMMON_SAMPLER_TYPE_TOP_K = 1,
|
||||
COMMON_SAMPLER_TYPE_TOP_P = 2,
|
||||
COMMON_SAMPLER_TYPE_MIN_P = 3,
|
||||
COMMON_SAMPLER_TYPE_TFS_Z = 4,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@ -99,7 +99,7 @@ enum dimre_method {
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct gpt_sampler_params {
|
||||
struct common_sampler_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
@ -124,13 +124,13 @@ struct gpt_sampler_params {
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
GPT_SAMPLER_TYPE_TFS_Z,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||||
GPT_SAMPLER_TYPE_TOP_P,
|
||||
GPT_SAMPLER_TYPE_MIN_P,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TFS_Z,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_MIN_P,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
@ -141,7 +141,7 @@ struct gpt_sampler_params {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
@ -183,7 +183,7 @@ struct gpt_params {
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
struct common_sampler_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
@ -208,9 +208,9 @@ struct gpt_params {
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
@ -348,9 +348,9 @@ struct gpt_params {
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void gpt_init();
|
||||
void common_init();
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
std::string common_params_get_system_info(const common_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
@ -404,29 +404,29 @@ std::string fs_get_cache_file(const std::string & filename);
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_init_result {
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
std::vector<llama_lora_adapter_container> lora_adapters;
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
@ -439,13 +439,13 @@ void llama_batch_add(
|
||||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
@ -453,7 +453,7 @@ std::vector<llama_token> llama_tokenize(
|
||||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
std::string common_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
@ -461,7 +461,7 @@ std::string llama_token_to_piece(
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string llama_detokenize(
|
||||
std::string common_detokenize(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
@ -471,31 +471,31 @@ std::string llama_detokenize(
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct llama_chat_msg {
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool llama_chat_verify_template(const std::string & tmpl);
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & chat,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
@ -503,31 +503,31 @@ std::string llama_chat_format_example(const struct llama_model * model,
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct llama_control_vector_data {
|
||||
struct common_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct llama_control_vector_load_info {
|
||||
struct common_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
@ -535,7 +535,7 @@ struct llama_control_vector_load_info {
|
||||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
@ -554,5 +554,5 @@ void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
FILE * stream, const common_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
100
common/log.cpp
100
common/log.cpp
@ -8,10 +8,10 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
int gpt_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity) {
|
||||
gpt_log_verbosity_thold = verbosity;
|
||||
void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
@ -29,16 +29,16 @@ static int64_t t_us() {
|
||||
}
|
||||
|
||||
// colors
|
||||
enum gpt_log_col : int {
|
||||
GPT_LOG_COL_DEFAULT = 0,
|
||||
GPT_LOG_COL_BOLD,
|
||||
GPT_LOG_COL_RED,
|
||||
GPT_LOG_COL_GREEN,
|
||||
GPT_LOG_COL_YELLOW,
|
||||
GPT_LOG_COL_BLUE,
|
||||
GPT_LOG_COL_MAGENTA,
|
||||
GPT_LOG_COL_CYAN,
|
||||
GPT_LOG_COL_WHITE,
|
||||
enum common_log_col : int {
|
||||
COMMON_LOG_COL_DEFAULT = 0,
|
||||
COMMON_LOG_COL_BOLD,
|
||||
COMMON_LOG_COL_RED,
|
||||
COMMON_LOG_COL_GREEN,
|
||||
COMMON_LOG_COL_YELLOW,
|
||||
COMMON_LOG_COL_BLUE,
|
||||
COMMON_LOG_COL_MAGENTA,
|
||||
COMMON_LOG_COL_CYAN,
|
||||
COMMON_LOG_COL_WHITE,
|
||||
};
|
||||
|
||||
// disable colors by default
|
||||
@ -54,7 +54,7 @@ static std::vector<const char *> g_col = {
|
||||
"",
|
||||
};
|
||||
|
||||
struct gpt_log_entry {
|
||||
struct common_log_entry {
|
||||
enum ggml_log_level level;
|
||||
|
||||
bool prefix;
|
||||
@ -71,7 +71,7 @@ struct gpt_log_entry {
|
||||
if (!fcur) {
|
||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||
// these messages will still be logged to a file
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && gpt_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && common_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -86,19 +86,19 @@ struct gpt_log_entry {
|
||||
if (timestamp) {
|
||||
// [M.s.ms.us]
|
||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||
g_col[GPT_LOG_COL_BLUE],
|
||||
g_col[COMMON_LOG_COL_BLUE],
|
||||
(int) (timestamp / 1000000 / 60),
|
||||
(int) (timestamp / 1000000 % 60),
|
||||
(int) (timestamp / 1000 % 1000),
|
||||
(int) (timestamp % 1000),
|
||||
g_col[GPT_LOG_COL_DEFAULT]);
|
||||
g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[GPT_LOG_COL_GREEN], g_col[GPT_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[GPT_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[GPT_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[GPT_LOG_COL_YELLOW], "" ); break;
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[COMMON_LOG_COL_GREEN], g_col[COMMON_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[COMMON_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[COMMON_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[COMMON_LOG_COL_YELLOW], "" ); break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@ -107,18 +107,18 @@ struct gpt_log_entry {
|
||||
fprintf(fcur, "%s", msg.data());
|
||||
|
||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||
fprintf(fcur, "%s", g_col[GPT_LOG_COL_DEFAULT]);
|
||||
fprintf(fcur, "%s", g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
fflush(fcur);
|
||||
}
|
||||
};
|
||||
|
||||
struct gpt_log {
|
||||
struct common_log {
|
||||
// default capacity - will be expanded if needed
|
||||
gpt_log() : gpt_log(256) {}
|
||||
common_log() : common_log(256) {}
|
||||
|
||||
gpt_log(size_t capacity) {
|
||||
common_log(size_t capacity) {
|
||||
file = nullptr;
|
||||
prefix = false;
|
||||
timestamps = false;
|
||||
@ -137,7 +137,7 @@ struct gpt_log {
|
||||
resume();
|
||||
}
|
||||
|
||||
~gpt_log() {
|
||||
~common_log() {
|
||||
pause();
|
||||
if (file) {
|
||||
fclose(file);
|
||||
@ -158,12 +158,12 @@ private:
|
||||
int64_t t_start;
|
||||
|
||||
// ring buffer of entries
|
||||
std::vector<gpt_log_entry> entries;
|
||||
std::vector<common_log_entry> entries;
|
||||
size_t head;
|
||||
size_t tail;
|
||||
|
||||
// worker thread copies into this
|
||||
gpt_log_entry cur;
|
||||
common_log_entry cur;
|
||||
|
||||
public:
|
||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||
@ -219,7 +219,7 @@ public:
|
||||
tail = (tail + 1) % entries.size();
|
||||
if (tail == head) {
|
||||
// expand the buffer
|
||||
std::vector<gpt_log_entry> new_entries(2*entries.size());
|
||||
std::vector<common_log_entry> new_entries(2*entries.size());
|
||||
|
||||
size_t new_tail = 0;
|
||||
|
||||
@ -320,15 +320,15 @@ public:
|
||||
pause();
|
||||
|
||||
if (colors) {
|
||||
g_col[GPT_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[GPT_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[GPT_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[GPT_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[GPT_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[GPT_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[GPT_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[GPT_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[GPT_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
g_col[COMMON_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[COMMON_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[COMMON_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[COMMON_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[COMMON_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[COMMON_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[COMMON_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[COMMON_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[COMMON_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
} else {
|
||||
for (size_t i = 0; i < g_col.size(); i++) {
|
||||
g_col[i] = "";
|
||||
@ -355,47 +355,47 @@ public:
|
||||
// public API
|
||||
//
|
||||
|
||||
struct gpt_log * gpt_log_init() {
|
||||
return new gpt_log;
|
||||
struct common_log * common_log_init() {
|
||||
return new common_log;
|
||||
}
|
||||
|
||||
struct gpt_log * gpt_log_main() {
|
||||
static struct gpt_log log;
|
||||
struct common_log * common_log_main() {
|
||||
static struct common_log log;
|
||||
|
||||
return &log;
|
||||
}
|
||||
|
||||
void gpt_log_pause(struct gpt_log * log) {
|
||||
void common_log_pause(struct common_log * log) {
|
||||
log->pause();
|
||||
}
|
||||
|
||||
void gpt_log_resume(struct gpt_log * log) {
|
||||
void common_log_resume(struct common_log * log) {
|
||||
log->resume();
|
||||
}
|
||||
|
||||
void gpt_log_free(struct gpt_log * log) {
|
||||
void common_log_free(struct common_log * log) {
|
||||
delete log;
|
||||
}
|
||||
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
log->add(level, fmt, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void gpt_log_set_file(struct gpt_log * log, const char * file) {
|
||||
void common_log_set_file(struct common_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void gpt_log_set_colors(struct gpt_log * log, bool colors) {
|
||||
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
}
|
||||
|
||||
void gpt_log_set_prefix(struct gpt_log * log, bool prefix) {
|
||||
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
log->set_prefix(prefix);
|
||||
}
|
||||
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps) {
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
36
common/log.h
36
common/log.h
@ -14,23 +14,23 @@
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via gpt_log_set_verbosity()
|
||||
extern int gpt_log_verbosity_thold;
|
||||
// set via common_log_set_verbosity()
|
||||
extern int common_log_verbosity_thold;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
|
||||
// the gpt_log uses an internal worker thread to print/write log messages
|
||||
// the common_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct gpt_log;
|
||||
struct common_log;
|
||||
|
||||
struct gpt_log * gpt_log_init();
|
||||
struct gpt_log * gpt_log_main(); // singleton, automatically destroys itself on exit
|
||||
void gpt_log_pause (struct gpt_log * log); // pause the worker thread, not thread-safe
|
||||
void gpt_log_resume(struct gpt_log * log); // resume the worker thread, not thread-safe
|
||||
void gpt_log_free (struct gpt_log * log);
|
||||
struct common_log * common_log_init();
|
||||
struct common_log * common_log_main(); // singleton, automatically destroys itself on exit
|
||||
void common_log_pause (struct common_log * log); // pause the worker thread, not thread-safe
|
||||
void common_log_resume(struct common_log * log); // resume the worker thread, not thread-safe
|
||||
void common_log_free (struct common_log * log);
|
||||
|
||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
|
||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||
//
|
||||
@ -54,10 +54,10 @@ void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * f
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
|
||||
void gpt_log_set_file (struct gpt_log * log, const char * file); // not thread-safe
|
||||
void gpt_log_set_colors (struct gpt_log * log, bool colors); // not thread-safe
|
||||
void gpt_log_set_prefix (struct gpt_log * log, bool prefix); // whether to output prefix to each log
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
@ -66,13 +66,13 @@ void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // w
|
||||
//
|
||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||
//
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > gpt_log_verbosity_thold
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > common_log_verbosity_thold
|
||||
//
|
||||
|
||||
#define LOG_TMPL(level, verbosity, ...) \
|
||||
do { \
|
||||
if ((verbosity) <= gpt_log_verbosity_thold) { \
|
||||
gpt_log_add(gpt_log_main(), (level), __VA_ARGS__); \
|
||||
if ((verbosity) <= common_log_verbosity_thold) { \
|
||||
common_log_add(common_log_main(), (level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
@ -20,16 +20,16 @@ void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, in
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
common_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
common_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
common_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
@ -62,12 +62,12 @@ constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram ngram_static) {
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
const common_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
@ -95,19 +95,19 @@ static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ng
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
common_ngram_cache & nc_primary, const std::vector<common_ngram> & ngrams_primary, common_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
const common_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
common_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
const common_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
@ -117,7 +117,7 @@ static llama_token try_draft(
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
common_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
@ -142,9 +142,9 @@ static llama_token try_draft(
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
@ -157,21 +157,21 @@ void llama_ngram_cache_draft(
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
common_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
common_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
std::vector<common_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
common_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
@ -196,16 +196,16 @@ void llama_ngram_cache_draft(
|
||||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
|
||||
const common_ngram ngram = item.first;
|
||||
common_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(common_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
@ -219,14 +219,14 @@ void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filen
|
||||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
common_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
common_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
@ -235,11 +235,11 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
while(hashmap_file.read(ngramc, sizeof(common_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
common_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
@ -257,12 +257,12 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const common_ngram ngram = ngram_part.first;
|
||||
common_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
common_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
@ -273,7 +273,7 @@ void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
|
@ -12,22 +12,22 @@
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
struct common_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
common_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
common_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
bool operator==(const common_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
@ -37,28 +37,28 @@ struct llama_ngram {
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_token_hash_function {
|
||||
struct common_token_hash_function {
|
||||
size_t operator()(const llama_token token) const {
|
||||
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
|
||||
return token * 11400714819323198485llu;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = llama_token_hash_function{}(ngram.tokens[0]);
|
||||
struct common_ngram_hash_function {
|
||||
size_t operator()(const common_ngram & ngram) const {
|
||||
size_t hash = common_token_hash_function{}(ngram.tokens[0]);
|
||||
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= llama_token_hash_function{}(ngram.tokens[i]);
|
||||
hash ^= common_token_hash_function{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
typedef std::unordered_map<llama_token, int32_t> common_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
typedef std::unordered_map<common_ngram, common_ngram_cache_part, common_ngram_hash_function> common_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
@ -70,8 +70,8 @@ typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
void common_ngram_cache_update(
|
||||
common_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
@ -81,21 +81,21 @@ void llama_ngram_cache_update(
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// Load an ngram cache saved with common_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add);
|
||||
|
@ -98,8 +98,8 @@ struct ring_buffer {
|
||||
std::vector<T> data;
|
||||
};
|
||||
|
||||
struct gpt_sampler {
|
||||
gpt_sampler_params params;
|
||||
struct common_sampler {
|
||||
common_sampler_params params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
@ -125,7 +125,7 @@ struct gpt_sampler {
|
||||
}
|
||||
};
|
||||
|
||||
std::string gpt_sampler_params::print() const {
|
||||
std::string common_sampler_params::print() const {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
@ -139,12 +139,12 @@ std::string gpt_sampler_params::print() const {
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new gpt_sampler {
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
@ -175,22 +175,22 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K:
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TOP_P:
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_MIN_P:
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TFS_Z:
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
default:
|
||||
@ -224,7 +224,7 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
if (gsmpl) {
|
||||
llama_sampler_free(gsmpl->grmr);
|
||||
|
||||
@ -234,7 +234,7 @@ void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
}
|
||||
}
|
||||
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
@ -244,14 +244,14 @@ void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool acce
|
||||
gsmpl->prev.push_back(token);
|
||||
}
|
||||
|
||||
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
return new gpt_sampler {
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
return new common_sampler {
|
||||
/* .params = */ gsmpl->params,
|
||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||
@ -261,7 +261,7 @@ struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
};
|
||||
}
|
||||
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
@ -272,7 +272,7 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||
}
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
@ -318,21 +318,21 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
||||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||
return gsmpl->prev.rat(0);
|
||||
}
|
||||
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
||||
std::string result = "logits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
@ -343,7 +343,7 @@ std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
n = std::min(n, (int) gsmpl->prev.size());
|
||||
|
||||
if (n <= 0) {
|
||||
@ -358,63 +358,63 @@ std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main,
|
||||
|
||||
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
||||
|
||||
result += llama_token_to_piece(ctx_main, id);
|
||||
result += common_token_to_piece(ctx_main, id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(names.size());
|
||||
|
||||
for (const auto & name : names) {
|
||||
@ -434,17 +434,17 @@ std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std
|
||||
return samplers;
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
||||
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(chars.size());
|
||||
|
||||
for (const auto & c : chars) {
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// gpt_sampler extends llama_sampler with additional functionality:
|
||||
// common_sampler extends llama_sampler with additional functionality:
|
||||
//
|
||||
// - grammar support
|
||||
// - custom sampler logic based on the parameters
|
||||
@ -23,30 +23,30 @@
|
||||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||
//
|
||||
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// be moved into the core llama library.
|
||||
//
|
||||
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
||||
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
|
||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||
//
|
||||
// TODO: measure grammar performance
|
||||
//
|
||||
|
||||
struct gpt_sampler;
|
||||
struct common_sampler;
|
||||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
||||
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void common_sampler_reset (struct common_sampler * gsmpl);
|
||||
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
||||
|
||||
// arguments can be nullptr to skip printing
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||
|
||||
// extended sampling implementation:
|
||||
//
|
||||
@ -58,26 +58,26 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||
//
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||
|
||||
// print the sampler chain into a string
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl);
|
||||
|
||||
// get a string representation of the last accepted tokens
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr);
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
|
@ -15,13 +15,13 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
int is_pp_shared = params.is_pp_shared;
|
||||
|
||||
@ -36,7 +36,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@ -45,7 +45,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
// ensure enough sequences are available
|
||||
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
||||
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||
// warm up
|
||||
{
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
common_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
@ -122,11 +122,11 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int i = 0; i < pp; ++i) {
|
||||
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
|
||||
llama_batch_add(batch, 0, i, { j }, false);
|
||||
common_batch_add(batch, 0, i, { j }, false);
|
||||
}
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
@ -151,10 +151,10 @@ int main(int argc, char ** argv) {
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
llama_batch_add(batch, 0, pp + i, { j }, true);
|
||||
common_batch_add(batch, 0, pp + i, { j }, true);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
|
@ -15,16 +15,16 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = params.n_parallel;
|
||||
@ -39,7 +39,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@ -51,13 +51,13 @@ int main(int argc, char ** argv) {
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
tokens_list = common_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
@ -94,7 +94,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
// create a llama_batch
|
||||
@ -108,7 +108,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
common_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
@ -123,8 +123,8 @@ int main(int argc, char ** argv) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
@ -161,7 +161,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
@ -185,15 +185,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
streams[i] += common_token_to_piece(ctx, new_token_id);
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
common_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
@ -872,7 +872,7 @@ static std::string basename(const std::string &path) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
struct train_params params = get_default_train_params();
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
|
@ -31,7 +31,7 @@ template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin) {
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
ret += common_token_to_piece(ctx, *begin);
|
||||
}
|
||||
|
||||
return ret;
|
||||
@ -272,8 +272,8 @@ struct tokenized_prompt {
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
|
||||
tokens_pos = common_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = common_tokenize(ctx, neg, add_bos, true);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
@ -281,7 +281,7 @@ struct tokenized_prompt {
|
||||
|
||||
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
|
||||
// TODO: customize padding token
|
||||
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
|
||||
std::vector<llama_token> pad_tokens = common_tokenize(ctx, " ", false);
|
||||
llama_token pad_tok = pad_tokens.back();
|
||||
while (tokens.size() < len) {
|
||||
tokens.push_back(pad_tok);
|
||||
@ -370,7 +370,7 @@ static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const
|
||||
* Load prompt files and completion file.
|
||||
* Then format each pair of prompt + completion to make an entry.
|
||||
*/
|
||||
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||
// load prompts
|
||||
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
||||
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
||||
@ -388,9 +388,9 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -413,7 +413,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model to get hparams
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
@ -28,7 +28,7 @@ static std::vector<std::string> split_lines(const std::string & s, const std::st
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
common_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -74,18 +74,18 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
|
||||
float * out = output + embd_pos * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd, embd_norm);
|
||||
common_embd_normalize(embd, out, n_embd, embd_norm);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
params.embedding = true;
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
@ -95,7 +95,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -122,7 +122,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// split the prompt into lines
|
||||
@ -135,7 +135,7 @@ int main(int argc, char ** argv) {
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||
auto inp = common_tokenize(ctx, prompt, true, true);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
@ -159,7 +159,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
|
||||
for (int j = 0; j < (int) inputs[i].size(); j++) {
|
||||
LOG("%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
}
|
||||
LOG("\n\n");
|
||||
}
|
||||
@ -199,7 +199,7 @@ int main(int argc, char ** argv) {
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
|
||||
s = 0;
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
}
|
||||
|
||||
// add to batch
|
||||
@ -263,7 +263,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f ", sim);
|
||||
}
|
||||
LOG("%1.10s", prompts[i].c_str());
|
||||
@ -296,7 +296,7 @@ int main(int argc, char ** argv) {
|
||||
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
LOG(" [");
|
||||
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f", sim);
|
||||
j++;
|
||||
if (j < n_embd_count) LOG(", "); else break;
|
||||
|
@ -126,10 +126,10 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
static bool run(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
@ -142,13 +142,13 @@ static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
int main(int argc, char ** argv) {
|
||||
callback_data cb_data;
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
||||
params.warmup = false;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
|
@ -128,7 +128,7 @@ struct lora_merge_ctx {
|
||||
|
||||
lora_merge_ctx(
|
||||
std::string & base_fname,
|
||||
std::vector<llama_lora_adapter_info> & lora_files,
|
||||
std::vector<common_lora_adapter_info> & lora_files,
|
||||
std::string & outfile,
|
||||
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
@ -400,9 +400,9 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ static void write_table_header(std::ofstream & file) {
|
||||
file << "| -------- | ----------- |\n";
|
||||
}
|
||||
|
||||
static void write_table_entry(std::ofstream & file, const llama_arg & opt) {
|
||||
static void write_table_entry(std::ofstream & file, const common_arg & opt) {
|
||||
file << "| `";
|
||||
// args
|
||||
for (const auto & arg : opt.args) {
|
||||
@ -40,7 +40,7 @@ static void write_table_entry(std::ofstream & file, const llama_arg & opt) {
|
||||
file << "` | " << md_help << " |\n";
|
||||
}
|
||||
|
||||
static void write_table(std::ofstream & file, std::vector<llama_arg *> & opts) {
|
||||
static void write_table(std::ofstream & file, std::vector<common_arg *> & opts) {
|
||||
write_table_header(file);
|
||||
for (const auto & opt : opts) {
|
||||
write_table_entry(file, *opt);
|
||||
@ -50,12 +50,12 @@ static void write_table(std::ofstream & file, std::vector<llama_arg *> & opts) {
|
||||
static void export_md(std::string fname, llama_example ex) {
|
||||
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
|
||||
|
||||
gpt_params params;
|
||||
auto ctx_arg = gpt_params_parser_init(params, ex);
|
||||
common_params params;
|
||||
auto ctx_arg = common_params_parser_init(params, ex);
|
||||
|
||||
std::vector<llama_arg *> common_options;
|
||||
std::vector<llama_arg *> sparam_options;
|
||||
std::vector<llama_arg *> specific_options;
|
||||
std::vector<common_arg *> common_options;
|
||||
std::vector<common_arg *> sparam_options;
|
||||
std::vector<common_arg *> specific_options;
|
||||
for (auto & opt : ctx_arg.options) {
|
||||
// in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
|
||||
if (opt.is_sparam) {
|
||||
|
@ -15,11 +15,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
for (uint64_t i = 0; i < sentences.size(); i++) {
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
const std::string input_string = instruction + sentences[i];
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, input_string, true, false);
|
||||
std::vector<llama_token> inputs = common_tokenize(model, input_string, true, false);
|
||||
|
||||
const int32_t n_toks = inputs.size();
|
||||
|
||||
@ -28,7 +28,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
// inputs.push_back(llama_token_eos(model));
|
||||
|
||||
// we want to ignore instruction tokens for mean pooling
|
||||
const int32_t n_inst = llama_tokenize(model, instruction, true, false).size();
|
||||
const int32_t n_inst = common_tokenize(model, instruction, true, false).size();
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
// debug tokens - should be matching as referenced in the GritLM sample
|
||||
@ -40,7 +40,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
// add input to batch (this increments n_tokens)
|
||||
for (int32_t j = 0; j < n_toks; j++) {
|
||||
llama_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
@ -75,7 +75,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
}
|
||||
|
||||
std::vector<float> emb_norm(emb_unorm.size());
|
||||
llama_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
|
||||
common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
|
||||
result.push_back(emb_norm);
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
@ -105,16 +105,16 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, prompt, false, true);
|
||||
std::vector<llama_token> inputs = common_tokenize(model, prompt, false, true);
|
||||
int32_t i_current_token = 0;
|
||||
|
||||
while (true) {
|
||||
llama_batch_clear(bat);
|
||||
common_batch_clear(bat);
|
||||
{
|
||||
const int32_t n_inputs = inputs.size();
|
||||
|
||||
for (int32_t i = 0; i < n_inputs; i++) {
|
||||
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
common_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
}
|
||||
}
|
||||
inputs.clear();
|
||||
@ -127,7 +127,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
break;
|
||||
}
|
||||
|
||||
std::string piece = llama_token_to_piece(ctx, token);
|
||||
std::string piece = common_token_to_piece(ctx, token);
|
||||
if (stream) {
|
||||
std::printf("%s", piece.c_str());
|
||||
std::fflush(stdout);
|
||||
@ -152,16 +152,16 @@ static std::string gritlm_instruction(const std::string & instruction) {
|
||||
}
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
||||
llama_model_params mparams = common_model_params_to_llama(params);
|
||||
llama_context_params cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
@ -199,10 +199,10 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
|
||||
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q1_d0 = common_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q1_d1 = common_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
||||
|
@ -37,13 +37,13 @@ struct Stats {
|
||||
class IMatrixCollector {
|
||||
public:
|
||||
IMatrixCollector() = default;
|
||||
void set_params(gpt_params params) { m_params = std::move(params); }
|
||||
void set_params(common_params params) { m_params = std::move(params); }
|
||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
void save_imatrix(int ncall = -1) const;
|
||||
bool load_imatrix(const char * file_name);
|
||||
private:
|
||||
std::unordered_map<std::string, Stats> m_stats;
|
||||
gpt_params m_params;
|
||||
common_params m_params;
|
||||
std::mutex m_mutex;
|
||||
int m_last_call = 0;
|
||||
std::vector<float> m_src1_data;
|
||||
@ -428,7 +428,7 @@ static void process_logits(
|
||||
}
|
||||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
@ -436,7 +436,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
@ -568,17 +568,17 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
@ -607,7 +607,7 @@ int main(int argc, char ** argv) {
|
||||
params.warmup = false;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -625,7 +625,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
if (!compute_imatrix(ctx, params)) {
|
||||
|
@ -35,8 +35,8 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
@ -44,7 +44,7 @@ static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
@ -95,12 +95,12 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
@ -109,14 +109,14 @@ static void sigint_handler(int signo) {
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
@ -166,7 +166,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
@ -195,15 +195,15 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_token_prefix(model) >= 0);
|
||||
GGML_ASSERT(llama_token_suffix(model) >= 0);
|
||||
@ -257,13 +257,13 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
@ -298,11 +298,11 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
@ -411,9 +411,9 @@ int main(int argc, char ** argv) {
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
@ -434,7 +434,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@ -446,7 +446,7 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
@ -465,10 +465,10 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
@ -505,8 +505,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
@ -529,7 +529,7 @@ int main(int argc, char ** argv) {
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -579,7 +579,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
@ -587,7 +587,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << llama_token_to_piece(ctx, token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
@ -601,7 +601,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@ -620,17 +620,17 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
@ -186,11 +186,11 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
for (nri = 0; nri < nr; nri++) {
|
||||
LOGi("Benchmark prompt processing (pp)");
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
|
||||
const int n_tokens = pp;
|
||||
for (i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(*batch, 0, i, { 0 }, false);
|
||||
common_batch_add(*batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
@ -210,9 +210,9 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
for (j = 0; j < pl; j++) {
|
||||
llama_batch_add(*batch, 0, i, { j }, true);
|
||||
common_batch_add(*batch, 0, i, { j }, true);
|
||||
}
|
||||
|
||||
LOGi("llama_decode() text generation: %d", i);
|
||||
@ -357,7 +357,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
const auto tokens_list = llama_tokenize(context, text, 1);
|
||||
const auto tokens_list = common_tokenize(context, text, 1);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
@ -369,14 +369,14 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
}
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOGi("%s", llama_token_to_piece(context, id).c_str());
|
||||
LOGi("%s", common_token_to_piece(context, id).c_str());
|
||||
}
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (auto i = 0; i < tokens_list.size(); i++) {
|
||||
llama_batch_add(*batch, tokens_list[i], i, { 0 }, false);
|
||||
common_batch_add(*batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
@ -419,7 +419,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto new_token_chars = llama_token_to_piece(context, new_token_id);
|
||||
auto new_token_chars = common_token_to_piece(context, new_token_id);
|
||||
cached_token_chars += new_token_chars;
|
||||
|
||||
jstring new_token = nullptr;
|
||||
@ -431,8 +431,8 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
new_token = env->NewStringUTF("");
|
||||
}
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
llama_batch_add(*batch, new_token_id, n_cur, { 0 }, true);
|
||||
common_batch_clear(*batch);
|
||||
common_batch_add(*batch, new_token_id, n_cur, { 0 }, true);
|
||||
|
||||
env->CallVoidMethod(intvar_ncur, la_int_var_inc);
|
||||
|
||||
|
@ -37,21 +37,21 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct common_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
@ -120,7 +120,7 @@ static void print_usage(int, char ** argv) {
|
||||
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
|
||||
|
||||
// load and preprocess the image
|
||||
llava_image_embed * embed = NULL;
|
||||
@ -146,7 +146,7 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||
return embed;
|
||||
}
|
||||
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
@ -159,16 +159,16 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -176,9 +176,9 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
||||
user_prompt = prompt + "\nASSISTANT:";
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
LOG("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
@ -211,15 +211,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
static struct llama_model * llava_init(common_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
@ -229,7 +229,7 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
return model;
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
@ -240,7 +240,7 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
@ -272,13 +272,13 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
|
@ -25,11 +25,11 @@ static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
static struct llama_model * llava_init(common_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
@ -39,13 +39,13 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
return model;
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
if (params->n_ctx < 2048) {
|
||||
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||
@ -79,7 +79,7 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||
static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
@ -114,7 +114,7 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
||||
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
}
|
||||
|
||||
@ -129,7 +129,7 @@ static void process_eval_image_embed(struct llava_context * ctx_llava, const str
|
||||
llava_image_embed_free(slice_embed);
|
||||
}
|
||||
|
||||
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
||||
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
|
||||
std::string system_prompt;
|
||||
int idx = 0;
|
||||
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||
@ -162,22 +162,22 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct common_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
|
||||
auto * ctx_clip = clip_init_context(params);
|
||||
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
if (!embeds) {
|
||||
@ -213,7 +213,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (!is_first) {
|
||||
@ -237,11 +237,11 @@ static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_par
|
||||
|
||||
LOG_INF("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
return smpl;
|
||||
}
|
||||
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
|
||||
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||
return tmp;
|
||||
@ -250,13 +250,13 @@ static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampl
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
show_additional_info(argc, argv);
|
||||
@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}else {
|
||||
while (true) {
|
||||
LOG("<user>");
|
||||
@ -309,7 +309,7 @@ int main(int argc, char ** argv) {
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
@ -37,13 +37,13 @@ struct ngram_container {
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int W = 15; // lookahead window
|
||||
const int N = 5; // n-gram size
|
||||
@ -56,7 +56,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -65,7 +65,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> inp;
|
||||
std::vector<llama_token> all;
|
||||
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
all = inp;
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
@ -79,7 +79,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@ -115,7 +115,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
|
||||
// verification n-grams
|
||||
std::vector<ngram_data> ngrams_cur(G);
|
||||
@ -156,12 +156,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// sample first token
|
||||
{
|
||||
id = gpt_sampler_sample(smpl, ctx, 0);
|
||||
id = common_sampler_sample(smpl, ctx, 0);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
@ -201,10 +201,10 @@ int main(int argc, char ** argv) {
|
||||
// V V V V V V
|
||||
// id
|
||||
{
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// current token - first token of the first level
|
||||
llama_batch_add(batch, id, n_past, seq_id_all, true);
|
||||
common_batch_add(batch, id, n_past, seq_id_all, true);
|
||||
|
||||
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
|
||||
{
|
||||
@ -229,7 +229,7 @@ int main(int argc, char ** argv) {
|
||||
ngrams_cur[g].tokens [j + 1] = t;
|
||||
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
|
||||
|
||||
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
||||
common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -241,13 +241,13 @@ int main(int argc, char ** argv) {
|
||||
seq_id_look[j] = i + j + 1;
|
||||
}
|
||||
|
||||
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
||||
common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
||||
}
|
||||
|
||||
// fill the rest of the levels
|
||||
for (int j = 1; j < N - 1; j++) {
|
||||
for (int i = 0; i < W; i++) {
|
||||
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
||||
common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -281,13 +281,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// sample the next token
|
||||
id = gpt_sampler_sample(smpl, ctx, i_batch);
|
||||
id = common_sampler_sample(smpl, ctx, i_batch);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// print
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
if (v == 0) {
|
||||
LOG("%s", token_str.c_str());
|
||||
@ -327,7 +327,7 @@ int main(int argc, char ** argv) {
|
||||
// print known n-grams starting with token id (debug)
|
||||
if (0 && v == 0) {
|
||||
if (ngrams_observed.cnt[id] > 0) {
|
||||
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
||||
@ -336,7 +336,7 @@ int main(int argc, char ** argv) {
|
||||
const int idx = id*(N - 1)*G + i*(N - 1);
|
||||
|
||||
for (int j = 0; j < N - 1; j++) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||
const std::string token_str = common_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
@ -358,7 +358,7 @@ int main(int argc, char ** argv) {
|
||||
if (v == 0) {
|
||||
// sample from the last level
|
||||
for (int i = 0; i < W; i++) {
|
||||
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < W; i++) {
|
||||
@ -466,9 +466,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
|
||||
LOG_INF("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_kv_cache_view_free(&kvc_view);
|
||||
|
||||
|
@ -12,9 +12,9 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -23,7 +23,7 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -31,15 +31,15 @@ int main(int argc, char ** argv){
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
llama_ngram_cache ngram_cache;
|
||||
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
common_ngram_cache ngram_cache;
|
||||
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -33,15 +33,15 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
|
||||
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
|
||||
common_ngram_cache ngram_cache_merged = common_ngram_cache_load(args[0]);
|
||||
|
||||
for (size_t i = 1; i < args.size()-1; ++i) {
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
|
||||
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
|
||||
common_ngram_cache ngram_cache = common_ngram_cache_load(args[i]);
|
||||
|
||||
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
common_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
|
||||
llama_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
common_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
}
|
||||
|
@ -13,13 +13,13 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
@ -28,18 +28,18 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
@ -48,7 +48,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
@ -57,7 +57,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
@ -86,7 +86,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
@ -115,7 +115,7 @@ int main(int argc, char ** argv){
|
||||
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
@ -133,7 +133,7 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
|
@ -13,13 +13,13 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
@ -31,29 +31,29 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
// Fill up context ngram cache with tokens from user input:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
@ -62,7 +62,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
@ -80,7 +80,7 @@ int main(int argc, char ** argv){
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@ -102,7 +102,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
bool has_eos = false;
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
@ -117,7 +117,7 @@ int main(int argc, char ** argv){
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// print current draft sequence
|
||||
@ -126,11 +126,11 @@ int main(int argc, char ** argv){
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
// sample from the target model
|
||||
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
|
||||
llama_token id = common_sampler_sample(smpl, ctx, i_dft);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
if (!params.use_color) {
|
||||
LOG("%s", token_str.c_str());
|
||||
@ -152,7 +152,7 @@ int main(int argc, char ** argv){
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
@ -178,7 +178,7 @@ int main(int argc, char ** argv){
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
break;
|
||||
@ -192,18 +192,18 @@ int main(int argc, char ** argv){
|
||||
// clean the cache of draft tokens that weren't accepted
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
// Draft already contains a single token sampled from the model:
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
GGML_ASSERT(draft[0] == inp.back());
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
|
||||
for (size_t i = 1; i < draft.size(); ++i) {
|
||||
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
@ -218,8 +218,8 @@ int main(int argc, char ** argv){
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
@ -237,9 +237,9 @@ int main(int argc, char ** argv){
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_batch_free(batch_tgt);
|
||||
|
||||
|
@ -33,8 +33,8 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
@ -63,7 +63,7 @@ static bool file_is_empty(const std::string & path) {
|
||||
}
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
@ -114,12 +114,12 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
@ -127,22 +127,22 @@ static void sigint_handler(int signo) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
llama_chat_msg new_msg{role, content};
|
||||
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
common_chat_msg new_msg{role, content};
|
||||
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG_DBG("formatted: '%s'\n", formatted.c_str());
|
||||
return formatted;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
@ -187,9 +187,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
std::vector<llama_chat_msg> chat_msgs;
|
||||
std::vector<common_chat_msg> chat_msgs;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
@ -197,7 +197,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
@ -246,7 +246,7 @@ int main(int argc, char ** argv) {
|
||||
// print chat template example in conversation mode
|
||||
if (params.conversation) {
|
||||
if (params.enable_chat_template) {
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
|
||||
} else {
|
||||
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
}
|
||||
@ -255,7 +255,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
@ -296,7 +296,7 @@ int main(int argc, char ** argv) {
|
||||
: params.prompt;
|
||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG_DBG("tokenize the prompt\n");
|
||||
embd_inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||
embd_inp = common_tokenize(ctx, prompt, true, true);
|
||||
} else {
|
||||
LOG_DBG("use session tokens\n");
|
||||
embd_inp = session_tokens;
|
||||
@ -379,13 +379,13 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > add_bos) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
@ -415,9 +415,9 @@ int main(int argc, char ** argv) {
|
||||
for (const auto & antiprompt : params.antiprompt) {
|
||||
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
||||
auto tmp = common_tokenize(ctx, antiprompt, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -430,9 +430,9 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
||||
auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -440,23 +440,23 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
@ -521,7 +521,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
antiprompt_ids.reserve(params.antiprompt.size());
|
||||
for (const std::string & antiprompt : params.antiprompt) {
|
||||
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
|
||||
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
|
||||
}
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
@ -679,9 +679,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_DBG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
@ -702,7 +702,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@ -714,7 +714,7 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo && display) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id, params.special);
|
||||
const std::string token_str = common_token_to_piece(ctx, id, params.special);
|
||||
|
||||
// Console/Stream Output
|
||||
LOG("%s", token_str.c_str());
|
||||
@ -743,7 +743,7 @@ int main(int argc, char ** argv) {
|
||||
// check for reverse prompt in the last n_prev tokens
|
||||
if (!params.antiprompt.empty()) {
|
||||
const int n_prev = 32;
|
||||
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
|
||||
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
|
||||
|
||||
is_antiprompt = false;
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
@ -765,7 +765,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// check for reverse prompt using special tokens
|
||||
llama_token last_token = gpt_sampler_last(smpl);
|
||||
llama_token last_token = common_sampler_last(smpl);
|
||||
for (std::vector<llama_token> ids : antiprompt_ids) {
|
||||
if (ids.size() == 1 && last_token == ids[0]) {
|
||||
if (params.interactive) {
|
||||
@ -782,13 +782,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
is_antiprompt = true;
|
||||
}
|
||||
@ -803,8 +803,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if current token is not EOG, we add it to current assistant message
|
||||
if (params.conversation) {
|
||||
const auto id = gpt_sampler_last(smpl);
|
||||
assistant_ss << llama_token_to_piece(ctx, id, false);
|
||||
const auto id = common_sampler_last(smpl);
|
||||
assistant_ss << common_token_to_piece(ctx, id, false);
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting) {
|
||||
@ -862,9 +862,9 @@ int main(int argc, char ** argv) {
|
||||
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
|
||||
: std::move(buffer);
|
||||
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
|
||||
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
@ -882,7 +882,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << llama_token_to_piece(ctx, token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
// reset assistant message
|
||||
@ -899,7 +899,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@ -925,10 +925,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
@ -54,7 +54,7 @@ static std::vector<std::string> k_prompts = {
|
||||
struct client {
|
||||
~client() {
|
||||
if (smpl) {
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}
|
||||
}
|
||||
|
||||
@ -75,7 +75,7 @@ struct client {
|
||||
std::string prompt;
|
||||
std::string response;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
};
|
||||
|
||||
static void print_date_time() {
|
||||
@ -103,13 +103,13 @@ static std::vector<std::string> split_string(const std::string& input, char deli
|
||||
int main(int argc, char ** argv) {
|
||||
srand(1234);
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// number of simultaneous "clients" to simulate
|
||||
const int32_t n_clients = params.n_parallel;
|
||||
@ -130,7 +130,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -160,11 +160,11 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = gpt_sampler_init(model, params.sparams);
|
||||
client.smpl = common_sampler_init(model, params.sparams);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
||||
tokens_system = common_tokenize(ctx, k_system, true);
|
||||
const int32_t n_tokens_system = tokens_system.size();
|
||||
|
||||
llama_seq_id g_seq_id = 0;
|
||||
@ -189,7 +189,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
common_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
@ -210,10 +210,10 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
for (auto & client : clients) {
|
||||
@ -223,7 +223,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
client.i_batch = batch.n_tokens;
|
||||
|
||||
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
|
||||
common_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
|
||||
|
||||
client.n_decoded += 1;
|
||||
}
|
||||
@ -252,14 +252,14 @@ int main(int argc, char ** argv) {
|
||||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
gpt_sampler_reset(client.smpl);
|
||||
common_sampler_reset(client.smpl);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
std::vector<llama_token> tokens_prompt;
|
||||
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
||||
tokens_prompt = common_tokenize(ctx, client.prompt, false);
|
||||
|
||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
|
||||
common_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
@ -340,9 +340,9 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||
const llama_token id = common_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||
|
||||
gpt_sampler_accept(client.smpl, id, true);
|
||||
common_sampler_accept(client.smpl, id, true);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@ -350,7 +350,7 @@ int main(int argc, char ** argv) {
|
||||
client.t_start_gen = ggml_time_us();
|
||||
}
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
client.response += token_str;
|
||||
client.sampled = id;
|
||||
|
@ -15,17 +15,17 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_junk = 250;
|
||||
params.n_keep = 32;
|
||||
params.i_pos = -1;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
int n_junk = params.n_junk;
|
||||
int n_keep = params.n_keep;
|
||||
@ -61,7 +61,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@ -72,7 +72,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
||||
|
||||
@ -92,10 +92,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
tokens_list = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// tokenize the prefix and use it as a sink
|
||||
const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
|
||||
const int n_tokens_prefix = common_tokenize(ctx, prompt_prefix, true).size();
|
||||
|
||||
const int n_tokens_all = tokens_list.size();
|
||||
|
||||
@ -137,10 +137,10 @@ int main(int argc, char ** argv) {
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
||||
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
}
|
||||
|
||||
if (i + n_batch >= n_tokens_all) {
|
||||
@ -171,10 +171,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
||||
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
}
|
||||
|
||||
if (i + n_batch >= n_tokens_all) {
|
||||
@ -229,15 +229,15 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
|
||||
|
||||
n_decode += 1;
|
||||
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
|
||||
common_batch_add(batch, new_token_id, n_past++, { 0 }, true);
|
||||
}
|
||||
|
||||
n_cur += 1;
|
||||
|
@ -35,7 +35,7 @@ struct results_log_softmax {
|
||||
};
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const llama_context * ctx, const common_params & params, const llama_model * model,
|
||||
const struct results_perplexity & results
|
||||
) {
|
||||
if (params.logdir.empty()) {
|
||||
@ -339,7 +339,7 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens
|
||||
}
|
||||
}
|
||||
|
||||
static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
|
||||
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
@ -350,7 +350,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
@ -474,7 +474,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
||||
}
|
||||
|
||||
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
|
||||
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
|
||||
if (params.ppl_stride > 0) {
|
||||
return perplexity_v2(ctx, params);
|
||||
}
|
||||
@ -502,7 +502,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
@ -772,7 +772,7 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
}
|
||||
}
|
||||
|
||||
static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
// Calculates hellaswag score (acc_norm) from prompt
|
||||
//
|
||||
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||
@ -853,7 +853,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||
for (size_t j = 0; j < 4; j++) {
|
||||
hs_cur.ending[j] = prompt_lines[idx*6+2+j];
|
||||
hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
|
||||
hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
|
||||
}
|
||||
|
||||
// determine the common prefix of the endings
|
||||
@ -910,7 +910,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
@ -926,7 +926,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
||||
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
@ -936,7 +936,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
@ -1112,7 +1112,7 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
|
||||
*
|
||||
*/
|
||||
static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void winogrande_score(llama_context * ctx, const common_params & params) {
|
||||
|
||||
constexpr int k_min_trailing_ctx = 3;
|
||||
|
||||
@ -1146,8 +1146,8 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
LOG_INF("%s : tokenizing selected tasks\n", __func__);
|
||||
|
||||
for (auto & task : data) {
|
||||
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, true);
|
||||
task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
|
||||
|
||||
task.common_prefix = 0;
|
||||
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
|
||||
@ -1162,8 +1162,8 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
task.seq_tokens[0].size() - task.common_prefix +
|
||||
task.seq_tokens[1].size() - task.common_prefix;
|
||||
|
||||
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], true).size();
|
||||
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
|
||||
task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
}
|
||||
|
||||
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
@ -1195,7 +1195,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
|
||||
int n_logits = 0;
|
||||
@ -1205,7 +1205,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
||||
common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
n_logits += 1;
|
||||
@ -1213,7 +1213,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
for (int s = 0; s < 2; ++s) {
|
||||
// TODO: end before the last token, no need to predict past the end of the sequences
|
||||
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
||||
common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
||||
n_logits += 1;
|
||||
}
|
||||
}
|
||||
@ -1370,7 +1370,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
}
|
||||
return false;
|
||||
}
|
||||
task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, true));
|
||||
task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
|
||||
}
|
||||
auto min_len = task.seq_tokens.front().size();
|
||||
for (auto& seq : task.seq_tokens) {
|
||||
@ -1414,7 +1414,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
// git@hf.co:datasets/Stevross/mmlu
|
||||
// https://huggingface.co/datasets/truthful_qa
|
||||
//
|
||||
static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
|
||||
|
||||
std::istringstream strstream(params.prompt);
|
||||
uint32_t n_task;
|
||||
@ -1548,7 +1548,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
@ -1571,7 +1571,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
for (size_t i = 0; i < cur_task.common_prefix; ++i) {
|
||||
//llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
|
||||
llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
||||
common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
@ -1581,7 +1581,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
@ -1695,7 +1695,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
if (params.logits_file.empty()) {
|
||||
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||
return;
|
||||
@ -1968,17 +1968,17 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int32_t n_ctx = params.n_ctx;
|
||||
|
||||
@ -2017,7 +2017,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -2036,7 +2036,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
struct results_perplexity results;
|
||||
|
@ -77,7 +77,7 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
common_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
@ -107,18 +107,18 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
common_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// For BERT models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
@ -149,7 +149,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// tokenize the prompts and trim
|
||||
for (auto & chunk : chunks) {
|
||||
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
|
||||
auto inp = common_tokenize(ctx, chunk.textdata, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
@ -204,7 +204,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
|
||||
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
}
|
||||
LOG_INF("\n\n");
|
||||
}
|
||||
@ -232,7 +232,7 @@ int main(int argc, char ** argv) {
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
}
|
||||
@ -260,20 +260,20 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
LOG("Enter query: ");
|
||||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
std::vector<int32_t> query_tokens = common_tokenize(ctx, query, true);
|
||||
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
llama_batch_clear(query_batch);
|
||||
common_batch_clear(query_batch);
|
||||
|
||||
// compute cosine similarities
|
||||
{
|
||||
std::vector<std::pair<int, float>> similarities;
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
similarities.push_back(std::make_pair(i, sim));
|
||||
}
|
||||
|
||||
|
@ -6,12 +6,12 @@
|
||||
#include <cstdio>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
params.sparams.seed = 1234;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -28,7 +28,7 @@ int main(int argc, char ** argv) {
|
||||
std::string result2;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||
auto tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// evaluate prompt
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
||||
@ -72,7 +72,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl, ctx, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result0 += next_token_str;
|
||||
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||
llama_free(ctx);
|
||||
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
@ -128,7 +128,7 @@ int main(int argc, char ** argv) {
|
||||
// second run
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl2, ctx2, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx2, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result1 += next_token_str;
|
||||
@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// make new context
|
||||
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
@ -216,7 +216,7 @@ int main(int argc, char ** argv) {
|
||||
// third run with seq 1 instead of 0
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl3, ctx3, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx3, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx3, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result2 += next_token_str;
|
||||
|
@ -188,8 +188,8 @@ struct server_slot {
|
||||
// sampling
|
||||
json json_schema;
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler_params sparams;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
|
||||
llama_token sampled;
|
||||
|
||||
@ -231,7 +231,7 @@ struct server_slot {
|
||||
generated_token_probs.clear();
|
||||
}
|
||||
|
||||
bool has_budget(gpt_params &global_params) {
|
||||
bool has_budget(common_params &global_params) {
|
||||
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
||||
return true; // limitless
|
||||
}
|
||||
@ -611,9 +611,9 @@ struct server_response {
|
||||
struct server_context {
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
std::vector<llama_lora_adapter_container> loras;
|
||||
std::vector<common_lora_adapter_container> loras;
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
llama_batch batch = {};
|
||||
|
||||
@ -655,20 +655,20 @@ struct server_context {
|
||||
// Clear any sampling context
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.smpl != nullptr) {
|
||||
gpt_sampler_free(slot.smpl);
|
||||
common_sampler_free(slot.smpl);
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
}
|
||||
|
||||
bool load_model(const gpt_params & params_) {
|
||||
bool load_model(const common_params & params_) {
|
||||
params = params_;
|
||||
|
||||
// dedicate one sequence to the system prompt
|
||||
params.n_parallel += 1;
|
||||
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
@ -771,10 +771,10 @@ struct server_context {
|
||||
|
||||
std::vector<llama_token> p;
|
||||
if (first) {
|
||||
p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
p = common_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
first = false;
|
||||
} else {
|
||||
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
||||
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
||||
}
|
||||
|
||||
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
||||
@ -788,7 +788,7 @@ struct server_context {
|
||||
}
|
||||
} else {
|
||||
auto s = json_prompt.template get<std::string>();
|
||||
prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
prompt_tokens = common_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
|
||||
}
|
||||
|
||||
return prompt_tokens;
|
||||
@ -999,7 +999,7 @@ struct server_context {
|
||||
slot.sparams.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
} else if (el[0].is_string()) {
|
||||
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
|
||||
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
||||
for (auto tok : toks) {
|
||||
slot.sparams.logit_bias.push_back({tok, bias});
|
||||
}
|
||||
@ -1031,7 +1031,7 @@ struct server_context {
|
||||
sampler_names.emplace_back(name);
|
||||
}
|
||||
}
|
||||
slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
|
||||
slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
|
||||
} else {
|
||||
slot.sparams.samplers = default_sparams.samplers;
|
||||
}
|
||||
@ -1039,10 +1039,10 @@ struct server_context {
|
||||
|
||||
{
|
||||
if (slot.smpl != nullptr) {
|
||||
gpt_sampler_free(slot.smpl);
|
||||
common_sampler_free(slot.smpl);
|
||||
}
|
||||
|
||||
slot.smpl = gpt_sampler_init(model, slot.sparams);
|
||||
slot.smpl = common_sampler_init(model, slot.sparams);
|
||||
if (slot.smpl == nullptr) {
|
||||
// for now, the only error that may happen here is invalid grammar
|
||||
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
||||
@ -1073,7 +1073,7 @@ struct server_context {
|
||||
system_tokens.clear();
|
||||
|
||||
if (!system_prompt.empty()) {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
|
||||
system_tokens = common_tokenize(ctx, system_prompt, true);
|
||||
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
const int32_t n_tokens_prompt = system_tokens.size();
|
||||
@ -1081,10 +1081,10 @@ struct server_context {
|
||||
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int32_t j = 0; j < n_tokens; ++j) {
|
||||
llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
|
||||
common_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
@ -1113,7 +1113,7 @@ struct server_context {
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special);
|
||||
const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
|
||||
slot.sampled = result.tok;
|
||||
|
||||
// search stop word and delete it
|
||||
@ -1224,7 +1224,7 @@ struct server_context {
|
||||
std::vector<std::string> samplers;
|
||||
samplers.reserve(slot.sparams.samplers.size());
|
||||
for (const auto & sampler : slot.sparams.samplers) {
|
||||
samplers.emplace_back(gpt_sampler_type_to_str(sampler));
|
||||
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
||||
}
|
||||
|
||||
return json {
|
||||
@ -1232,7 +1232,7 @@ struct server_context {
|
||||
{"n_predict", slot.n_predict}, // Server configured n_predict
|
||||
{"model", params.model_alias},
|
||||
{"seed", slot.sparams.seed},
|
||||
{"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
|
||||
{"seed_cur", slot.smpl ? common_sampler_get_seed(slot.smpl) : 0},
|
||||
{"temperature", slot.sparams.temp},
|
||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||
@ -1297,7 +1297,7 @@ struct server_context {
|
||||
};
|
||||
|
||||
if (slot.sparams.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
||||
const std::vector<llama_token> to_send_toks = common_tokenize(ctx, tkn.text_to_send, false);
|
||||
const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
|
||||
const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
|
||||
|
||||
@ -1347,7 +1347,7 @@ struct server_context {
|
||||
if (slot.sparams.n_probs > 0) {
|
||||
std::vector<completion_token_output> probs;
|
||||
if (!slot.params.stream && slot.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
||||
const std::vector<llama_token> stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
|
||||
|
||||
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
|
||||
probs = std::vector<completion_token_output>(
|
||||
@ -1401,7 +1401,7 @@ struct server_context {
|
||||
continue;
|
||||
}
|
||||
|
||||
llama_embd_normalize(embd, embd_res.data(), n_embd);
|
||||
common_embd_normalize(embd, embd_res.data(), n_embd);
|
||||
|
||||
res.data = json {
|
||||
{"embedding", embd_res},
|
||||
@ -1835,7 +1835,7 @@ struct server_context {
|
||||
} break;
|
||||
case SERVER_TASK_TYPE_SET_LORA:
|
||||
{
|
||||
llama_lora_adapters_apply(ctx, loras);
|
||||
common_lora_adapters_apply(ctx, loras);
|
||||
server_task_result result;
|
||||
result.id = task.id;
|
||||
result.stop = true;
|
||||
@ -1921,7 +1921,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
// start populating the batch for this iteration
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// frist, add sampled tokens from any ongoing sequences
|
||||
for (auto & slot : slots) {
|
||||
@ -1935,7 +1935,7 @@ struct server_context {
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
|
||||
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
|
||||
|
||||
slot.n_past += 1;
|
||||
|
||||
@ -2092,7 +2092,7 @@ struct server_context {
|
||||
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
||||
}
|
||||
|
||||
gpt_sampler_reset(slot.smpl);
|
||||
common_sampler_reset(slot.smpl);
|
||||
|
||||
if (!slot.params.cache_prompt) {
|
||||
slot.n_past_se = 0;
|
||||
@ -2105,7 +2105,7 @@ struct server_context {
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (int i = 0; i < slot.n_past; ++i) {
|
||||
gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
|
||||
common_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2159,7 +2159,7 @@ struct server_context {
|
||||
slot.n_past_se = 0;
|
||||
slot.ga_i = 0;
|
||||
// TODO: is the system prompt ever in the sampling context?
|
||||
gpt_sampler_reset(slot.smpl);
|
||||
common_sampler_reset(slot.smpl);
|
||||
}
|
||||
|
||||
// remove the non-common part from the cache
|
||||
@ -2184,7 +2184,7 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
|
||||
common_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
||||
@ -2322,9 +2322,9 @@ struct server_context {
|
||||
}
|
||||
|
||||
completion_token_output result;
|
||||
const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
||||
const llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
|
||||
|
||||
gpt_sampler_accept(slot.smpl, id, true);
|
||||
common_sampler_accept(slot.smpl, id, true);
|
||||
|
||||
slot.n_decoded += 1;
|
||||
if (slot.n_decoded == 1) {
|
||||
@ -2335,7 +2335,7 @@ struct server_context {
|
||||
|
||||
result.tok = id;
|
||||
|
||||
const auto * cur_p = gpt_sampler_get_candidates(slot.smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
|
||||
|
||||
for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
|
||||
result.probs.push_back({
|
||||
@ -2399,13 +2399,13 @@ inline void signal_handler(int signal) {
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
// own arguments required by this example
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// enabling this will output extra debug information in the HTTP responses from the server
|
||||
// see format_final_response_oaicompat()
|
||||
@ -2427,7 +2427,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
|
||||
std::unique_ptr<httplib::Server> svr;
|
||||
@ -3014,7 +3014,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (with_pieces) {
|
||||
for (const auto& token : tokens) {
|
||||
std::string piece = llama_token_to_piece(ctx_server.ctx, token);
|
||||
std::string piece = common_token_to_piece(ctx_server.ctx, token);
|
||||
json piece_json;
|
||||
|
||||
// Check if the piece is valid UTF-8
|
||||
@ -3357,7 +3357,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// print sample chat example to make it clear which template is used
|
||||
LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), llama_chat_format_example(ctx_server.model, params.chat_template).c_str());
|
||||
LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
|
||||
|
||||
ctx_server.queue_tasks.on_new_task(std::bind(
|
||||
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
||||
|
@ -57,7 +57,7 @@ static T json_value(const json & body, const std::string & key, const T & defaul
|
||||
|
||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||
std::vector<llama_chat_msg> chat;
|
||||
std::vector<common_chat_msg> chat;
|
||||
|
||||
for (size_t i = 0; i < messages.size(); ++i) {
|
||||
const auto & curr_msg = messages[i];
|
||||
@ -84,7 +84,7 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
|
||||
chat.push_back({role, content});
|
||||
}
|
||||
|
||||
const auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
|
||||
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
|
||||
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
|
||||
|
||||
return formatted_chat;
|
||||
@ -246,7 +246,7 @@ template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin) {
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
ret += common_token_to_piece(ctx, *begin);
|
||||
}
|
||||
|
||||
return ret;
|
||||
@ -254,7 +254,7 @@ static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
|
||||
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
||||
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
|
||||
|
||||
// if the size is 1 and first bit is 1, meaning it's a partial character
|
||||
// (size > 1 meaning it's already a known token)
|
||||
|
@ -26,20 +26,20 @@ struct seq_draft {
|
||||
std::vector<llama_token> tokens;
|
||||
std::vector<std::vector<llama_token_data>> dists;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init_tgt = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
@ -78,7 +78,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
@ -124,8 +124,8 @@ int main(int argc, char ** argv) {
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
|
||||
LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
|
||||
llama_token_to_piece(ctx_tgt, i).c_str(),
|
||||
llama_token_to_piece(ctx_dft, i).c_str());
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
@ -134,7 +134,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
@ -147,7 +147,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx_tgt, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
@ -178,7 +178,7 @@ int main(int argc, char ** argv) {
|
||||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
|
||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||
|
||||
@ -186,8 +186,8 @@ int main(int argc, char ** argv) {
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate gpt_sampler for each draft sequence
|
||||
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
|
||||
// allocate llama_sampler for each draft sequence
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
@ -229,9 +229,9 @@ int main(int argc, char ** argv) {
|
||||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
// stochastic verification
|
||||
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
|
||||
auto & dist_tgt = *common_sampler_get_candidates(smpl);
|
||||
|
||||
float p_tgt = 0.0f;
|
||||
float p_dft = 0.0f;
|
||||
@ -277,13 +277,13 @@ int main(int argc, char ** argv) {
|
||||
s_keep = s;
|
||||
accept = true;
|
||||
token_id = drafts[s].tokens[i_dft];
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
break;
|
||||
} else {
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
|
||||
drafts[s].active = false;
|
||||
|
||||
// calculate residual probability
|
||||
@ -349,19 +349,19 @@ int main(int argc, char ** argv) {
|
||||
const int idx = dist(rng);
|
||||
|
||||
token_id = dist_tgt.data[idx].id;
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
}
|
||||
} else {
|
||||
// greedy verification
|
||||
|
||||
// sample from the target model
|
||||
LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
common_sampler_accept(smpl, token_id, true);
|
||||
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
token_str = common_token_to_piece(ctx_tgt, token_id);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
@ -431,8 +431,8 @@ int main(int argc, char ** argv) {
|
||||
drafts[0].dists.push_back(std::vector<llama_token_data>());
|
||||
drafts[0].i_batch_tgt.push_back(0);
|
||||
|
||||
llama_batch_clear(batch_dft);
|
||||
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
common_batch_clear(batch_dft);
|
||||
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
|
||||
@ -446,9 +446,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (drafts[0].smpl) {
|
||||
gpt_sampler_free(drafts[0].smpl);
|
||||
common_sampler_free(drafts[0].smpl);
|
||||
}
|
||||
drafts[0].smpl = gpt_sampler_clone(smpl);
|
||||
drafts[0].smpl = common_sampler_clone(smpl);
|
||||
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
@ -461,8 +461,8 @@ int main(int argc, char ** argv) {
|
||||
drafts[0].drafting = true;
|
||||
drafts[0].i_batch_dft = 0;
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
|
||||
// sample n_draft tokens from the draft model using tree-based sampling
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
@ -477,13 +477,13 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
|
||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
||||
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
@ -518,9 +518,9 @@ int main(int argc, char ** argv) {
|
||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
if (drafts[n_seq_cur].smpl) {
|
||||
gpt_sampler_free(drafts[n_seq_cur].smpl);
|
||||
common_sampler_free(drafts[n_seq_cur].smpl);
|
||||
}
|
||||
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
|
||||
drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
@ -536,7 +536,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int s = sa[is];
|
||||
|
||||
gpt_sampler_accept(drafts[s].smpl, id, true);
|
||||
common_sampler_accept(drafts[s].smpl, id, true);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[s].dists
|
||||
@ -545,12 +545,12 @@ int main(int argc, char ** argv) {
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
common_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
@ -617,11 +617,11 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
gpt_perf_print(ctx_tgt, smpl);
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
gpt_sampler_free(drafts[s].smpl);
|
||||
common_sampler_free(drafts[s].smpl);
|
||||
}
|
||||
|
||||
llama_sampler_free(softmax);
|
||||
|
@ -365,7 +365,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
const bool parse_special = !no_parse_special;
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
tokens = ::llama_tokenize(model, prompt, add_bos, parse_special);
|
||||
tokens = common_tokenize(model, prompt, add_bos, parse_special);
|
||||
|
||||
if (printing_ids) {
|
||||
printf("[");
|
||||
@ -380,7 +380,7 @@ int main(int raw_argc, char ** raw_argv) {
|
||||
} else {
|
||||
bool invalid_utf8 = false;
|
||||
printf("%6d -> '", tokens[i]);
|
||||
write_utf8_cstr_to_stdout(llama_token_to_piece(ctx, tokens[i]).c_str(), invalid_utf8);
|
||||
write_utf8_cstr_to_stdout(common_token_to_piece(ctx, tokens[i]).c_str(), invalid_utf8);
|
||||
if (invalid_utf8) {
|
||||
printf("' (utf-8 decode failure)\n");
|
||||
} else {
|
||||
|
@ -10,12 +10,12 @@
|
||||
#include <cassert>
|
||||
|
||||
int main(void) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
printf("test-arg-parser: make sure there is no duplicated arguments in any examples\n\n");
|
||||
for (int ex = 0; ex < LLAMA_EXAMPLE_COUNT; ex++) {
|
||||
try {
|
||||
auto ctx_arg = gpt_params_parser_init(params, (enum llama_example)ex);
|
||||
auto ctx_arg = common_params_parser_init(params, (enum llama_example)ex);
|
||||
std::unordered_set<std::string> seen_args;
|
||||
std::unordered_set<std::string> seen_env_vars;
|
||||
for (const auto & opt : ctx_arg.options) {
|
||||
@ -58,44 +58,44 @@ int main(void) {
|
||||
|
||||
// missing value
|
||||
argv = {"binary_name", "-m"};
|
||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
|
||||
// wrong value (int)
|
||||
argv = {"binary_name", "-ngl", "hello"};
|
||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
|
||||
// wrong value (enum)
|
||||
argv = {"binary_name", "-sm", "hello"};
|
||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
|
||||
// non-existence arg in specific example (--draft cannot be used outside llama-speculative)
|
||||
argv = {"binary_name", "--draft", "123"};
|
||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SERVER));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SERVER));
|
||||
|
||||
|
||||
printf("test-arg-parser: test valid usage\n\n");
|
||||
|
||||
argv = {"binary_name", "-m", "model_file.gguf"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.model == "model_file.gguf");
|
||||
|
||||
argv = {"binary_name", "-t", "1234"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.cpuparams.n_threads == 1234);
|
||||
|
||||
argv = {"binary_name", "--verbose"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.verbosity > 1);
|
||||
|
||||
argv = {"binary_name", "-m", "abc.gguf", "--predict", "6789", "--batch-size", "9090"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.model == "abc.gguf");
|
||||
assert(params.n_predict == 6789);
|
||||
assert(params.n_batch == 9090);
|
||||
|
||||
// --draft cannot be used outside llama-speculative
|
||||
argv = {"binary_name", "--draft", "123"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SPECULATIVE));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SPECULATIVE));
|
||||
assert(params.n_draft == 123);
|
||||
|
||||
// skip this part on windows, because setenv is not supported
|
||||
@ -106,12 +106,12 @@ int main(void) {
|
||||
|
||||
setenv("LLAMA_ARG_THREADS", "blah", true);
|
||||
argv = {"binary_name"};
|
||||
assert(false == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
|
||||
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
||||
setenv("LLAMA_ARG_THREADS", "1010", true);
|
||||
argv = {"binary_name"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.model == "blah.gguf");
|
||||
assert(params.cpuparams.n_threads == 1010);
|
||||
|
||||
@ -121,7 +121,7 @@ int main(void) {
|
||||
setenv("LLAMA_ARG_MODEL", "blah.gguf", true);
|
||||
setenv("LLAMA_ARG_THREADS", "1010", true);
|
||||
argv = {"binary_name", "-m", "overwritten.gguf"};
|
||||
assert(true == gpt_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
|
||||
assert(params.model == "overwritten.gguf");
|
||||
assert(params.cpuparams.n_threads == 1010);
|
||||
#endif // _WIN32
|
||||
|
@ -140,11 +140,11 @@ int main(void) {
|
||||
|
||||
// test llama_chat_format_single for system message
|
||||
printf("\n\n=== llama_chat_format_single (system message) ===\n\n");
|
||||
std::vector<llama_chat_msg> chat2;
|
||||
llama_chat_msg sys_msg{"system", "You are a helpful assistant"};
|
||||
std::vector<common_chat_msg> chat2;
|
||||
common_chat_msg sys_msg{"system", "You are a helpful assistant"};
|
||||
|
||||
auto fmt_sys = [&](std::string tmpl) {
|
||||
auto output = llama_chat_format_single(nullptr, tmpl, chat2, sys_msg, false);
|
||||
auto output = common_chat_format_single(nullptr, tmpl, chat2, sys_msg, false);
|
||||
printf("fmt_sys(%s) : %s\n", tmpl.c_str(), output.c_str());
|
||||
printf("-------------------------\n");
|
||||
return output;
|
||||
@ -160,10 +160,10 @@ int main(void) {
|
||||
chat2.push_back({"system", "You are a helpful assistant"});
|
||||
chat2.push_back({"user", "Hello"});
|
||||
chat2.push_back({"assistant", "I am assistant"});
|
||||
llama_chat_msg new_msg{"user", "How are you"};
|
||||
common_chat_msg new_msg{"user", "How are you"};
|
||||
|
||||
auto fmt_single = [&](std::string tmpl) {
|
||||
auto output = llama_chat_format_single(nullptr, tmpl, chat2, new_msg, true);
|
||||
auto output = common_chat_format_single(nullptr, tmpl, chat2, new_msg, true);
|
||||
printf("fmt_single(%s) : %s\n", tmpl.c_str(), output.c_str());
|
||||
printf("-------------------------\n");
|
||||
return output;
|
||||
|
@ -24,8 +24,8 @@ int main() {
|
||||
}
|
||||
|
||||
if (rand () % 10 < 5) {
|
||||
gpt_log_set_timestamps(gpt_log_main(), rand() % 2);
|
||||
gpt_log_set_prefix (gpt_log_main(), rand() % 2);
|
||||
common_log_set_timestamps(common_log_main(), rand() % 2);
|
||||
common_log_set_prefix (common_log_main(), rand() % 2);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
@ -202,7 +202,7 @@ int main(int argc, char **argv) {
|
||||
for (int i = 0; i < nthread; i++) {
|
||||
threads[i] = std::thread([&, i]() {
|
||||
for (const auto & test_kv : k_tests) {
|
||||
const std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, add_special, false);
|
||||
const std::vector<llama_token> res = common_tokenize(ctx, test_kv.first, add_special, false);
|
||||
|
||||
// here only print the result of the first thread
|
||||
// because the other threads are running the same tests
|
||||
@ -212,7 +212,7 @@ int main(int argc, char **argv) {
|
||||
|
||||
printf("\n");
|
||||
printf("src: '%s'\n", test_kv.first.c_str());
|
||||
printf("res: '%s'\n", llama_detokenize(ctx, res).c_str());
|
||||
printf("res: '%s'\n", common_detokenize(ctx, res).c_str());
|
||||
printf("tok: ");
|
||||
for (const auto & tok : res) {
|
||||
printf("%d ", tok);
|
||||
@ -229,16 +229,16 @@ int main(int argc, char **argv) {
|
||||
if (!correct) {
|
||||
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
|
||||
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
|
||||
llama_detokenize(ctx, res).c_str(),
|
||||
llama_detokenize(ctx, test_kv.second).c_str());
|
||||
common_detokenize(ctx, res).c_str(),
|
||||
common_detokenize(ctx, test_kv.second).c_str());
|
||||
fprintf(stderr, "%s : expected tokens: ", __func__);
|
||||
for (const auto & t : test_kv.second) {
|
||||
fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str());
|
||||
fprintf(stderr, "%6d '%s', ", t, common_token_to_piece(ctx, t).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s : got tokens: ", __func__);
|
||||
for (const auto & t : res) {
|
||||
fprintf(stderr, "%6d '%s', ", t, llama_token_to_piece(ctx, t).c_str());
|
||||
fprintf(stderr, "%6d '%s', ", t, common_token_to_piece(ctx, t).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
@ -273,7 +273,7 @@ int main(int argc, char **argv) {
|
||||
{
|
||||
const auto t_start = ggml_time_us();
|
||||
|
||||
res = llama_tokenize(ctx, text, add_special, false);
|
||||
res = common_tokenize(ctx, text, add_special, false);
|
||||
|
||||
const auto t_end = ggml_time_us();
|
||||
|
||||
|
@ -78,10 +78,10 @@ int main(int argc, char **argv) {
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string str = llama_detokenize(ctx, std::vector<int>(1, i));
|
||||
std::string str = common_detokenize(ctx, std::vector<int>(1, i));
|
||||
try {
|
||||
auto cps = unicode_cpts_from_utf8(str);
|
||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, str, false, true);
|
||||
if (ignore_merges && tokens.size() > 1) {
|
||||
fprintf(stderr,
|
||||
"%s : error: token %d detokenizes to '%s'(%zu) but "
|
||||
@ -94,7 +94,7 @@ int main(int argc, char **argv) {
|
||||
fprintf(stderr, "]\n");
|
||||
return 2;
|
||||
}
|
||||
std::string check = llama_detokenize(ctx, tokens);
|
||||
std::string check = common_detokenize(ctx, tokens);
|
||||
if (check != str) {
|
||||
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
|
||||
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
|
||||
@ -123,8 +123,8 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
std::string str = unicode_cpt_to_utf8(cp);
|
||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||
std::string check = llama_detokenize(ctx, tokens);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, str, false);
|
||||
std::string check = common_detokenize(ctx, tokens);
|
||||
if (cp != 9601 && str != check) {
|
||||
fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
|
||||
cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||
|
@ -66,9 +66,9 @@ int main(int argc, char ** argv) {
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string str = llama_detokenize(ctx, std::vector<int>(1, i), true);
|
||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
|
||||
std::string check = llama_detokenize(ctx, tokens);
|
||||
std::string str = common_detokenize(ctx, std::vector<int>(1, i), true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, str, false, true);
|
||||
std::string check = common_detokenize(ctx, tokens);
|
||||
if (check != str) {
|
||||
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
|
||||
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
|
||||
@ -93,8 +93,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
std::string str = unicode_cpt_to_utf8(cp);
|
||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false, true);
|
||||
std::string check = llama_detokenize(ctx, tokens);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, str, false, true);
|
||||
std::string check = common_detokenize(ctx, tokens);
|
||||
if (cp != 9601 && str != check) {
|
||||
fprintf(stderr, "error: codepoint 0x%x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
|
||||
cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||
|
Loading…
Reference in New Issue
Block a user