ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line
This commit is contained in:
Francis Couture-Harpin 2024-06-19 14:34:32 -04:00
parent bd807499f7
commit 7ef4254a92
2 changed files with 58 additions and 31 deletions

View File

@ -11371,40 +11371,68 @@ void ggml_vec_dot_q1_3_q8_0(int n, float * restrict s, size_t bs, const void * r
__m256 accumf = _mm256_setzero_ps(); __m256 accumf = _mm256_setzero_ps();
for (int i = 0; i < nb; ++i) { for (int i = 0; i < nb; ++i) {
{ // __m128i x12b = _mm_maskload_epi32((const int32_t *) x[i].q, _mm_set_epi32(0, -1, -1, -1));
__m256i x0 = _mm256_set_epi32(q1_3_grid[x[i].q[7]], q1_3_grid[x[i].q[6]], // __m128i x12b = _mm_insert_epi8(x12a, x[i].qs[0], 12);
q1_3_grid[x[i].q[5]], q1_3_grid[x[i].q[4]], // WARNING: reading 3 bytes further than necessary. It's faster than the above on my CPU, though.
q1_3_grid[x[i].q[3]], q1_3_grid[x[i].q[2]], __m128i x12b = _mm_loadu_si128((const __m128i_u *) x[i].q);
q1_3_grid[x[i].q[1]], q1_3_grid[x[i].q[0]]); __m256i x12 = MM256_SET_M128I(x12b, x12b);
__m256i y0 = _mm256_lddqu_si256((const __m256i_u *) (y[2*i].qs));
__m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i].d));
__m256 q = mul_sum_i8_pairs_float(x0, y0);
accumf = _mm256_fmadd_ps(d, q, accumf);
}
{ {
__m256i x1 = _mm256_castsi128_si256(_mm_set_epi32(q1_3_grid[x[i].q[11]], q1_3_grid[x[i].q[10]], __m256i x0l = _mm256_shuffle_epi8(x12, _mm256_set_epi8(5, -1, 5, -1, 5, -1, 5, -1,
q1_3_grid[x[i].q[9]], q1_3_grid[x[i].q[8]])); 4, -1, 4, -1, 4, -1, 4, -1,
__m256i x2 = _mm256_cvtepu8_epi16(_mm_maskload_epi32((const int32_t *) x[i].q, _mm_set_epi32(0, -1, -1, -1))); 1, -1, 1, -1, 1, -1, 1, -1,
0, -1, 0, -1, 0, -1, 0, -1));
__m256i x0h = _mm256_shuffle_epi8(x12, _mm256_set_epi8(7, -1, 7, -1, 7, -1, 7, -1,
6, -1, 6, -1, 6, -1, 6, -1,
3, -1, 3, -1, 3, -1, 3, -1,
2, -1, 2, -1, 2, -1, 2, -1));
__m256i x1l = _mm256_shuffle_epi8(x12, _mm256_set_epi8(7, -1, 6, -1, 5, -1, 4, -1,
3, -1, 2, -1, 1, -1, 0, -1,
9, -1, 9, -1, 9, -1, 9, -1,
8, -1, 8, -1, 8, -1, 8, -1));
__m256i x1h = _mm256_shuffle_epi8(x12, _mm256_set_epi8(12, -1, 12, -1, 12, -1, 12, -1,
11, -1, 10, -1, 9, -1, 8, -1,
11, -1, 11, -1, 11, -1, 11, -1,
10, -1, 10, -1, 10, -1, 10, -1));
const __m256i shift0 = _mm256_set_epi16(3, 9, 27, 81,
3, 9, 27, 81,
3, 9, 27, 81,
3, 9, 27, 81);
const __m256i shift1l = _mm256_set_epi16(1, 1, 1, 1,
1, 1, 1, 1,
3, 9, 27, 81,
3, 9, 27, 81);
const __m256i shift1h = _mm256_set_epi16(3, 9, 27, 81,
1, 1, 1, 1,
3, 9, 27, 81,
3, 9, 27, 81);
x0l = _mm256_mullo_epi16(x0l, shift0);
x0h = _mm256_mullo_epi16(x0h, shift0);
x1l = _mm256_mullo_epi16(x1l, shift1l);
x1h = _mm256_mullo_epi16(x1h, shift1h);
x0l = _mm256_mulhi_epu16(x0l, _mm256_set1_epi16(3));
x0h = _mm256_mulhi_epu16(x0h, _mm256_set1_epi16(3));
x1l = _mm256_mulhi_epu16(x1l, _mm256_set1_epi16(3));
x1h = _mm256_mulhi_epu16(x1h, _mm256_set1_epi16(3));
x0l = _mm256_sub_epi16(x0l, _mm256_set1_epi16(1));
x0h = _mm256_sub_epi16(x0h, _mm256_set1_epi16(1));
x1l = _mm256_sub_epi16(x1l, _mm256_set1_epi16(1));
x1h = _mm256_sub_epi16(x1h, _mm256_set1_epi16(1));
__m256i x0 = _mm256_packs_epi16(x0l, x0h);
__m256i x1 = _mm256_packs_epi16(x1l, x1h);
__m256i y0 = _mm256_lddqu_si256((const __m256i_u *) (y[2*i + 0].qs));
__m256i y1 = _mm256_lddqu_si256((const __m256i_u *) (y[2*i + 1].qs)); __m256i y1 = _mm256_lddqu_si256((const __m256i_u *) (y[2*i + 1].qs));
x2 = _mm256_mulhi_epu16(x2, _mm256_set1_epi16(3 << 8)); __m256 d0 = _mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i].d));
x2 = _mm256_sub_epi16(x2, _mm256_set1_epi16(1)); __m256 d1 = _mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i + 1].d));
// TODO: reduce shuffling __m256 q0 = mul_sum_i8_pairs_float(x0, y0);
x2 = _mm256_packs_epi16(x2, _mm256_setzero_si256()); __m256 q1 = mul_sum_i8_pairs_float(x1, y1);
x2 = _mm256_permute4x64_epi64(x2, _MM_SHUFFLE(3, 1, 2, 0));
__m128i x2_l = _mm_insert_epi32(_mm256_castsi256_si128(x2), q1_3_grid[x[i].qs[0]], 3);
x1 = _mm256_inserti128_si256(x1, x2_l, 1);
__m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(y[2*i + 1].d)); accumf = _mm256_fmadd_ps(d0, q0, accumf);
accumf = _mm256_fmadd_ps(d1, q1, accumf);
__m256 q = mul_sum_i8_pairs_float(x1, y1);
accumf = _mm256_fmadd_ps(d, q, accumf);
} }
} }

View File

@ -148,9 +148,9 @@ def __quantize_q1_3_rows(n: np.ndarray) -> np.ndarray:
q48 = np.sum(q48 * pow3.reshape((1, 1, 4)), axis=2, keepdims=True).reshape((n_blocks, 12)) q48 = np.sum(q48 * pow3.reshape((1, 1, 4)), axis=2, keepdims=True).reshape((n_blocks, 12))
q4 = np.sum(q4 * pow3.reshape((1, 4)), axis=1, keepdims=True) q4 = np.sum(q4 * pow3.reshape((1, 4)), axis=1, keepdims=True)
q48 = q48 + (q12 * 81) q48 = q48 + (q12 * 81)
q = np.concatenate([q48, q4], axis=1); q = np.concatenate([q48, q4], axis=1)
q = ((q.astype(np.uint16) * 256) // 243).astype(np.uint8) q = ((q.astype(np.uint16) * 256) // 243).astype(np.uint8)
q = np.where(q != 0, q + 1, 0); q = np.where(q != 0, q + 1, 0)
return q.reshape(__quantize_q1_3_shape_change(shape)) return q.reshape(__quantize_q1_3_shape_change(shape))
@ -170,4 +170,3 @@ def quantize_q1_3(data: np.ndarray):
return __quantize_q1_3_lazy(data) return __quantize_q1_3_lazy(data)
else: else:
return __quantize_q1_3_array(data) return __quantize_q1_3_array(data)