mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
export-lora : throw error if lora is quantized (#9002)
This commit is contained in:
parent
fc4ca27b25
commit
828d6ff7d7
@ -17,9 +17,9 @@ For example:
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
./bin/llama-export-lora \
|
./bin/llama-export-lora \
|
||||||
-m open-llama-3b-v2-q8_0.gguf \
|
-m open-llama-3b-v2.gguf \
|
||||||
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
-o open-llama-3b-v2-english2tokipona-chat.gguf \
|
||||||
--lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
|
--lora lora-open-llama-3b-v2-english2tokipona-chat-LATEST.gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
|
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
|
||||||
|
@ -10,6 +10,12 @@
|
|||||||
|
|
||||||
static bool g_verbose = false;
|
static bool g_verbose = false;
|
||||||
|
|
||||||
|
struct tensor_transformation {
|
||||||
|
struct ggml_tensor * in;
|
||||||
|
struct ggml_tensor * out;
|
||||||
|
bool is_copy;
|
||||||
|
};
|
||||||
|
|
||||||
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
||||||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
||||||
@ -198,8 +204,7 @@ struct lora_merge_ctx {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// mapping base tensor to out tensor (same shape with base, but different type)
|
// mapping base tensor to out tensor (same shape with base, but different type)
|
||||||
// if out_tensor == nullptr, we only copy it
|
std::vector<tensor_transformation> trans;
|
||||||
std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
|
|
||||||
for (auto & it : base_model.tensors) {
|
for (auto & it : base_model.tensors) {
|
||||||
bool t_a = true;
|
bool t_a = true;
|
||||||
bool t_b = true;
|
bool t_b = true;
|
||||||
@ -212,14 +217,22 @@ struct lora_merge_ctx {
|
|||||||
// only copy
|
// only copy
|
||||||
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
||||||
ggml_set_name(cpy_tensor, base_tensor->name);
|
ggml_set_name(cpy_tensor, base_tensor->name);
|
||||||
base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
|
trans.push_back({
|
||||||
|
cpy_tensor,
|
||||||
|
cpy_tensor,
|
||||||
|
true,
|
||||||
|
});
|
||||||
gguf_add_tensor(ctx_out, cpy_tensor);
|
gguf_add_tensor(ctx_out, cpy_tensor);
|
||||||
} else if (t_a && t_b) {
|
} else if (t_a && t_b) {
|
||||||
// need merging
|
// need merging
|
||||||
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
||||||
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
||||||
ggml_set_name(out_tensor, base_tensor->name);
|
ggml_set_name(out_tensor, base_tensor->name);
|
||||||
base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
|
trans.push_back({
|
||||||
|
base_tensor,
|
||||||
|
out_tensor,
|
||||||
|
false,
|
||||||
|
});
|
||||||
gguf_add_tensor(ctx_out, out_tensor);
|
gguf_add_tensor(ctx_out, out_tensor);
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
||||||
@ -234,12 +247,12 @@ struct lora_merge_ctx {
|
|||||||
|
|
||||||
// process base model tensors
|
// process base model tensors
|
||||||
size_t n_merged = 0;
|
size_t n_merged = 0;
|
||||||
for (auto & it : base_to_out_tensors) {
|
for (auto & it : trans) {
|
||||||
if (it.second != nullptr) {
|
if (!it.is_copy) {
|
||||||
merge_tensor(it.first, it.second);
|
merge_tensor(it.in, it.out);
|
||||||
n_merged++;
|
n_merged++;
|
||||||
} else {
|
} else {
|
||||||
copy_tensor(it.first);
|
copy_tensor(it.in);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -252,7 +265,7 @@ struct lora_merge_ctx {
|
|||||||
}
|
}
|
||||||
|
|
||||||
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
||||||
printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
|
printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void copy_tensor(struct ggml_tensor * base) {
|
void copy_tensor(struct ggml_tensor * base) {
|
||||||
@ -285,6 +298,10 @@ struct lora_merge_ctx {
|
|||||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||||
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
||||||
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
||||||
|
// TODO: add support for quantized lora
|
||||||
|
if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
|
||||||
|
throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
|
||||||
|
}
|
||||||
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
||||||
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user