mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 19:50:17 +00:00
Apply suggestions from the PR: refactor test-vanilla-pca and remove unecessary allocations
This commit is contained in:
parent
1840df1b58
commit
82efaafe9d
@ -4,20 +4,25 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "../pca.hpp"
|
#include "../pca.hpp"
|
||||||
|
|
||||||
#ifdef GGML_USE_CUDA
|
#include "ggml-cpp.h"
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-backend.h"
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
|
||||||
#include "ggml-metal.h"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
|
||||||
// Function to run PCA and print results
|
// Function to run PCA and print results
|
||||||
static void run_pca_test(struct ggml_context *ctx, float *matrix, int rows, int cols) {
|
static void run_pca_test(float *matrix, int rows, int cols) {
|
||||||
// struct ggml_tensor *input_tensor = create_tensor(ctx, matrix, rows, cols);
|
// Initialize ggml context
|
||||||
|
size_t ctx_size = 0;
|
||||||
|
ctx_size += rows * cols * ggml_type_size(GGML_TYPE_F32);
|
||||||
|
ctx_size += 1 * ggml_tensor_overhead();
|
||||||
|
|
||||||
|
struct ggml_init_params ctx_params {
|
||||||
|
/*.mem_size =*/ ctx_size,
|
||||||
|
/*.mem_buffer =*/ NULL,
|
||||||
|
/*.no_alloc =*/ false,
|
||||||
|
};
|
||||||
|
struct ggml_context * ctx = ggml_init(ctx_params);
|
||||||
struct ggml_tensor *input_tensor = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, rows, cols);
|
struct ggml_tensor *input_tensor = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, rows, cols);
|
||||||
memcpy(input_tensor->data, matrix, rows * cols * sizeof(float));
|
memcpy(input_tensor->data, matrix, rows * cols * sizeof(float));
|
||||||
|
|
||||||
@ -37,32 +42,10 @@ static void run_pca_test(struct ggml_context *ctx, float *matrix, int rows, int
|
|||||||
printf("\nEigenvalue: %f\n", result.explained_variance);
|
printf("\nEigenvalue: %f\n", result.explained_variance);
|
||||||
|
|
||||||
free(result.principal_component);
|
free(result.principal_component);
|
||||||
|
ggml_free(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
int main() {
|
int main() {
|
||||||
// Initialize ggml context
|
|
||||||
size_t ctx_size = 0;
|
|
||||||
ctx_size += 4 * 4 * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 10 * 10 * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 3 * 3 * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 3 * 3 * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 4 * ggml_tensor_overhead();
|
|
||||||
ctx_size += 1024;
|
|
||||||
|
|
||||||
// Step 2. Initialize GGML Context
|
|
||||||
struct ggml_init_params ctx_params {
|
|
||||||
ctx_size, // mem_size
|
|
||||||
NULL, // mem_buffer
|
|
||||||
false, // no_alloc
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx = ggml_init(ctx_params);
|
|
||||||
|
|
||||||
|
|
||||||
if (ctx == NULL) {
|
|
||||||
printf("Failed to initialize ggml context\n");
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Define matrices
|
// Define matrices
|
||||||
float input_matrix1[16] = {
|
float input_matrix1[16] = {
|
||||||
-0.124132, 0.740341, -0.452462, 0.777050,
|
-0.124132, 0.740341, -0.452462, 0.777050,
|
||||||
@ -98,19 +81,18 @@ int main() {
|
|||||||
|
|
||||||
// Run PCA for each matrix
|
// Run PCA for each matrix
|
||||||
printf("Testing Matrix 1:\n");
|
printf("Testing Matrix 1:\n");
|
||||||
run_pca_test(ctx, input_matrix1, 4, 4);
|
run_pca_test(input_matrix1, 4, 4);
|
||||||
|
|
||||||
printf("\nTesting Matrix 2:\n");
|
printf("\nTesting Matrix 2:\n");
|
||||||
run_pca_test(ctx, input_matrix2, 10, 10);
|
run_pca_test(input_matrix2, 10, 10);
|
||||||
|
|
||||||
printf("\nTesting Matrix 3:\n");
|
printf("\nTesting Matrix 3:\n");
|
||||||
run_pca_test(ctx, input_matrix3, 3, 3);
|
run_pca_test(input_matrix3, 3, 3);
|
||||||
|
|
||||||
printf("\nTesting Matrix 4:\n");
|
printf("\nTesting Matrix 4:\n");
|
||||||
run_pca_test(ctx, input_matrix4, 3, 3);
|
run_pca_test(input_matrix4, 3, 3);
|
||||||
|
|
||||||
// Cleanup
|
// Cleanup
|
||||||
ggml_free(ctx);
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -51,7 +51,6 @@ static void compute_covariance(struct pca_params &pca_params,
|
|||||||
struct ggml_backend * backend) {
|
struct ggml_backend * backend) {
|
||||||
|
|
||||||
size_t ctx_size = 0;
|
size_t ctx_size = 0;
|
||||||
ctx_size += 7 * X->ne[0] * X->ne[1] * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 7 * ggml_tensor_overhead();
|
ctx_size += 7 * ggml_tensor_overhead();
|
||||||
ctx_size += ggml_graph_overhead();
|
ctx_size += ggml_graph_overhead();
|
||||||
ctx_size += 1024;
|
ctx_size += 1024;
|
||||||
@ -105,7 +104,6 @@ static void compute_cross_covariance(struct pca_params &pca_params,
|
|||||||
struct ggml_backend * backend) {
|
struct ggml_backend * backend) {
|
||||||
|
|
||||||
size_t ctx_size = 0;
|
size_t ctx_size = 0;
|
||||||
ctx_size += 9 * A->ne[0] * B->ne[1] * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 9 * ggml_tensor_overhead();
|
ctx_size += 9 * ggml_tensor_overhead();
|
||||||
ctx_size += ggml_graph_overhead();
|
ctx_size += ggml_graph_overhead();
|
||||||
ctx_size += 1024;
|
ctx_size += 1024;
|
||||||
@ -280,7 +278,6 @@ static void run_single_pca(struct pca_params &pca_params,
|
|||||||
|
|
||||||
// Compute the context size needed
|
// Compute the context size needed
|
||||||
size_t ctx_size = 0;
|
size_t ctx_size = 0;
|
||||||
ctx_size += m * m * ggml_type_size(GGML_TYPE_F32);
|
|
||||||
ctx_size += 1 * ggml_tensor_overhead();
|
ctx_size += 1 * ggml_tensor_overhead();
|
||||||
|
|
||||||
// Step 2. Initialize GGML Context
|
// Step 2. Initialize GGML Context
|
||||||
|
@ -1,314 +0,0 @@
|
|||||||
#include "common.h"
|
|
||||||
#include "llama.h"
|
|
||||||
#include "ggml.h"
|
|
||||||
|
|
||||||
#ifdef GGML_USE_CUDA
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <cstdio>
|
|
||||||
#include <ctime>
|
|
||||||
#include <random>
|
|
||||||
#include <string>
|
|
||||||
#include <tuple>
|
|
||||||
#include <vector>
|
|
||||||
#include <algorithm>
|
|
||||||
#include <iostream>
|
|
||||||
#include <fstream>
|
|
||||||
|
|
||||||
#define DEBUG_POS 5
|
|
||||||
|
|
||||||
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
|
|
||||||
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
|
|
||||||
if (!with_data) return;
|
|
||||||
printf("%s: %s[0] = [", __func__, t->name);
|
|
||||||
for (size_t i = 0; i <= DEBUG_POS; i++) {
|
|
||||||
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
|
|
||||||
}
|
|
||||||
printf(" ... ]\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
// begin vanilla pca namespace
|
|
||||||
namespace PCA {
|
|
||||||
|
|
||||||
// input params for PCA computations
|
|
||||||
struct pca_params {
|
|
||||||
int n_threads = 1;
|
|
||||||
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
|
|
||||||
int n_iterations = 1000;
|
|
||||||
float tolerance = 1e-7;
|
|
||||||
};
|
|
||||||
|
|
||||||
// result from each iteration
|
|
||||||
struct pca_result {
|
|
||||||
struct ggml_tensor * principal_component; // eigenvectors of the covariance matrix
|
|
||||||
float explained_variance; // eigenvalues of the covariance matrix
|
|
||||||
};
|
|
||||||
|
|
||||||
void compute_covariance(struct pca_params &pca_params,
|
|
||||||
struct ggml_tensor * X,
|
|
||||||
struct ggml_tensor * covariance,
|
|
||||||
struct ggml_backend * backend) {
|
|
||||||
|
|
||||||
// Memory allocation
|
|
||||||
struct ggml_cgraph * gf = NULL;
|
|
||||||
struct ggml_context * ctx = NULL;
|
|
||||||
struct ggml_init_params ctx_params = {
|
|
||||||
ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
|
|
||||||
NULL,
|
|
||||||
true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
|
||||||
};
|
|
||||||
ctx = ggml_init(ctx_params);
|
|
||||||
gf = ggml_new_graph(ctx);
|
|
||||||
|
|
||||||
// Step 0: Transpose the input because of row-major
|
|
||||||
X = ggml_cont(ctx, ggml_transpose(ctx, X));
|
|
||||||
|
|
||||||
// Step 1: Compute the mean for each feature
|
|
||||||
struct ggml_tensor * mean = ggml_repeat(ctx, ggml_mean(ctx, X), X); // mean with trick to make it easier to sub
|
|
||||||
struct ggml_tensor * centered_data = ggml_sub(ctx, X, mean);
|
|
||||||
|
|
||||||
// Step 2: Compute the covariance matrix
|
|
||||||
struct ggml_tensor * cov = ggml_mul_mat(ctx, centered_data, centered_data); // C = X * X^T
|
|
||||||
cov = ggml_scale(ctx, cov, 1.0/(X->ne[0]-1));
|
|
||||||
ggml_build_forward_expand(gf, cov);
|
|
||||||
|
|
||||||
// Step 3: Create ggml_gallocr for graph computation
|
|
||||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
|
||||||
ggml_gallocr_alloc_graph(allocr, gf);
|
|
||||||
|
|
||||||
// Step 4: Check if CPU and compute the result of the graph
|
|
||||||
if (ggml_backend_is_cpu(backend)) {
|
|
||||||
ggml_backend_cpu_set_n_threads(backend, pca_params.n_threads);
|
|
||||||
}
|
|
||||||
ggml_backend_graph_compute(backend, gf);
|
|
||||||
|
|
||||||
// Step 5: Store covariance matrix in the data pointer
|
|
||||||
struct ggml_tensor * result = ggml_graph_node(gf, ggml_graph_n_nodes(gf)-1);
|
|
||||||
float * result_data = (float*) malloc(ggml_nbytes(result));
|
|
||||||
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
|
|
||||||
covariance->data = result_data;
|
|
||||||
|
|
||||||
// Step 6: Free memory
|
|
||||||
ggml_gallocr_free(allocr);
|
|
||||||
ggml_free(ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void compute_cross_covariance(struct pca_params &pca_params,
|
|
||||||
struct ggml_tensor * A,
|
|
||||||
struct ggml_tensor * B,
|
|
||||||
struct ggml_tensor * cross_covariance,
|
|
||||||
struct ggml_backend * backend) {
|
|
||||||
|
|
||||||
// Memory allocation
|
|
||||||
struct ggml_cgraph * gf = NULL;
|
|
||||||
struct ggml_context * ctx = NULL;
|
|
||||||
struct ggml_init_params ctx_params = {
|
|
||||||
ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
|
|
||||||
NULL,
|
|
||||||
true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
|
||||||
};
|
|
||||||
ctx = ggml_init(ctx_params);
|
|
||||||
gf = ggml_new_graph(ctx);
|
|
||||||
|
|
||||||
// Step 1: Compute matrices of cross_covariance
|
|
||||||
struct ggml_tensor * AT = ggml_cont(ctx, ggml_transpose(ctx, A));
|
|
||||||
struct ggml_tensor * BT = ggml_cont(ctx, ggml_transpose(ctx, B));
|
|
||||||
struct ggml_tensor * AT_B = ggml_mul_mat(ctx, AT, BT);
|
|
||||||
struct ggml_tensor * BT_A = ggml_cont(ctx, ggml_transpose(ctx, AT_B));
|
|
||||||
|
|
||||||
// Step 2: Compute the covariance matrix
|
|
||||||
struct ggml_tensor * cross_cov = ggml_add(ctx, AT_B, BT_A);
|
|
||||||
cross_cov = ggml_scale(ctx, cross_cov, 0.5);
|
|
||||||
ggml_build_forward_expand(gf, cross_cov);
|
|
||||||
|
|
||||||
// Step 3: Create ggml_gallocr for graph computation
|
|
||||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
|
||||||
ggml_gallocr_alloc_graph(allocr, gf);
|
|
||||||
|
|
||||||
// Step 4: Check if CPU and compute the result of the graph
|
|
||||||
if (ggml_backend_is_cpu(backend)) {
|
|
||||||
ggml_backend_cpu_set_n_threads(backend, pca_params.n_threads);
|
|
||||||
}
|
|
||||||
ggml_backend_graph_compute(backend, gf);
|
|
||||||
|
|
||||||
// Step 5: Store covariance matrix in the data pointer
|
|
||||||
struct ggml_tensor * result = ggml_graph_node(gf, ggml_graph_n_nodes(gf)-1);
|
|
||||||
float * result_data = (float*) malloc(ggml_nbytes(result));
|
|
||||||
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
|
|
||||||
cross_covariance->data = result_data;
|
|
||||||
|
|
||||||
// Step 6: Free memory
|
|
||||||
ggml_gallocr_free(allocr);
|
|
||||||
ggml_free(ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find the dominant eigenvector of tensor M
|
|
||||||
static void power_iteration(struct pca_params &pca_params,
|
|
||||||
struct ggml_tensor * M,
|
|
||||||
struct pca_result &result,
|
|
||||||
struct ggml_backend * backend) {
|
|
||||||
|
|
||||||
int m = M->ne[1];
|
|
||||||
|
|
||||||
// Initialize random vector
|
|
||||||
std::random_device rd;
|
|
||||||
std::mt19937 gen(rd());
|
|
||||||
std::uniform_real_distribution<float> dist(-1.0f, 1.0f);
|
|
||||||
float * b = (float*) malloc(m * sizeof(float));
|
|
||||||
for (int i = 0; i < m; i++) {
|
|
||||||
b[i] = dist(gen);
|
|
||||||
};
|
|
||||||
float eigenvalue = 0;
|
|
||||||
|
|
||||||
// Iterate
|
|
||||||
int n_rounds = pca_params.n_iterations / pca_params.n_batch;
|
|
||||||
for(int i = 0; i < n_rounds; i++) {
|
|
||||||
|
|
||||||
// Memory allocation
|
|
||||||
struct ggml_cgraph * gf = NULL;
|
|
||||||
struct ggml_context * ctx = NULL;
|
|
||||||
struct ggml_init_params params = {
|
|
||||||
ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
|
|
||||||
NULL,
|
|
||||||
true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
|
||||||
};
|
|
||||||
ctx = ggml_init(params);
|
|
||||||
gf = ggml_new_graph(ctx);
|
|
||||||
|
|
||||||
// Fill current eigen vector
|
|
||||||
struct ggml_tensor * e_curr = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, m);
|
|
||||||
struct ggml_tensor * e_prev = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, m);
|
|
||||||
|
|
||||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
|
||||||
|
|
||||||
ggml_backend_tensor_set(e_curr, b, 0, ggml_nbytes(e_curr));
|
|
||||||
ggml_backend_tensor_set(e_prev, b, 0, ggml_nbytes(e_curr));
|
|
||||||
|
|
||||||
struct ggml_tensor * e_next = NULL;
|
|
||||||
struct ggml_tensor * e_norm = NULL;
|
|
||||||
for(int j = 0; j < pca_params.n_batch; j++) {
|
|
||||||
// Compute next candidate vector multiplying M with the current vector
|
|
||||||
e_next = ggml_mul_mat(ctx, M, e_curr);
|
|
||||||
|
|
||||||
// Compute the norm of the new vector (and normalize it)
|
|
||||||
// this will give us the next eigenvector and eigenvalue
|
|
||||||
e_norm = ggml_sqrt_inplace(ctx, ggml_sum_rows(ctx, ggml_sqr(ctx, e_next)));
|
|
||||||
e_curr = ggml_div_inplace(ctx, e_next, e_norm);
|
|
||||||
ggml_format_name(e_norm, "eigenvalue_%d", j);
|
|
||||||
ggml_format_name(e_curr, "eigenvector_%d", j);
|
|
||||||
|
|
||||||
// Update graph
|
|
||||||
ggml_build_forward_expand(gf, e_curr);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute the similarity between the current eigenvector and the previous (dot product)
|
|
||||||
struct ggml_tensor * similarity = ggml_mul_mat(ctx, e_curr, e_prev);
|
|
||||||
ggml_build_forward_expand(gf, similarity);
|
|
||||||
|
|
||||||
// Create ggml_gallocr for graph computation
|
|
||||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
|
||||||
ggml_gallocr_alloc_graph(allocr, gf);
|
|
||||||
|
|
||||||
// Check if CPU and compute the result of the graph
|
|
||||||
if (ggml_backend_is_cpu(backend)) {
|
|
||||||
ggml_backend_cpu_set_n_threads(backend, pca_params.n_threads);
|
|
||||||
}
|
|
||||||
ggml_status graph_status = ggml_backend_graph_compute(backend, gf);
|
|
||||||
|
|
||||||
// Get graph results (eigenvector and eigenvalue) and store it in b and eigenvalue
|
|
||||||
if(graph_status == GGML_STATUS_SUCCESS){
|
|
||||||
|
|
||||||
// Similarity is the last node in the graph
|
|
||||||
struct ggml_tensor * similarity_tensor = ggml_graph_node(gf, ggml_graph_n_nodes(gf)-1);
|
|
||||||
float similarity = (float)((float*) similarity_tensor->data)[0];
|
|
||||||
|
|
||||||
// Eigenvector is the second last node in the graph
|
|
||||||
// struct ggml_tensor * eigenvector_tensor = gf->nodes[gf->n_nodes-2];
|
|
||||||
struct ggml_tensor * eigenvector_tensor = ggml_graph_node(gf,ggml_graph_n_nodes(gf)-2);
|
|
||||||
float * eigenvector_data = (float*) malloc(ggml_nbytes(eigenvector_tensor));
|
|
||||||
ggml_backend_tensor_get(eigenvector_tensor, eigenvector_data, 0, ggml_nbytes(eigenvector_tensor));
|
|
||||||
b = eigenvector_data;
|
|
||||||
|
|
||||||
// Eigenvalue computation is 1 operation before eigenvector computation
|
|
||||||
// struct ggml_tensor * eigenvalue_tensor = gf->nodes[gf->n_nodes-3];
|
|
||||||
struct ggml_tensor * eigenvalue_tensor = ggml_graph_node(gf, ggml_graph_n_nodes(gf)-3);
|
|
||||||
eigenvalue = (float)((float*) eigenvalue_tensor->data)[0];
|
|
||||||
|
|
||||||
// Check if the similarity is close enough to 1, if so we converged and should break
|
|
||||||
if(1 - similarity < pca_params.tolerance)
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Free memory
|
|
||||||
ggml_gallocr_free(allocr);
|
|
||||||
ggml_free(ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Store result
|
|
||||||
result.principal_component->data = b;
|
|
||||||
result.explained_variance = eigenvalue;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void run_single_pca(struct pca_params &pca_params,
|
|
||||||
struct ggml_tensor * X,
|
|
||||||
struct pca_result &result
|
|
||||||
) {
|
|
||||||
|
|
||||||
ggml_set_name(X, "input_tensor");
|
|
||||||
|
|
||||||
int m = X->ne[1]; // Number of features
|
|
||||||
|
|
||||||
// Step 1. Initialize GGML Backend
|
|
||||||
ggml_backend_t backend = NULL;
|
|
||||||
#ifdef GGML_USE_CUDA
|
|
||||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
|
||||||
backend = ggml_backend_cuda_init(0); // init device 0
|
|
||||||
if (!backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); }
|
|
||||||
#endif
|
|
||||||
// If there aren't GPU Backends fallback to CPU backend
|
|
||||||
if (!backend) { backend = ggml_backend_cpu_init(); }
|
|
||||||
|
|
||||||
// Compute the context size needed
|
|
||||||
size_t ctx_size = 2 * ggml_tensor_overhead();
|
|
||||||
|
|
||||||
// Step 2. Initialize GGML Context
|
|
||||||
struct ggml_init_params ctx_params {
|
|
||||||
ctx_size, // mem_size
|
|
||||||
NULL, // mem_buffer
|
|
||||||
true, // no_alloc
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx = ggml_init(ctx_params);
|
|
||||||
|
|
||||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
|
||||||
|
|
||||||
// Step 3. Compute the data covariance matrix
|
|
||||||
struct ggml_tensor * covariance = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, m, m);
|
|
||||||
ggml_set_name(covariance, "covariance_tensor");
|
|
||||||
compute_covariance(pca_params, X, covariance, backend);
|
|
||||||
|
|
||||||
// Step 4. Power iteration
|
|
||||||
result.principal_component = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, m);
|
|
||||||
power_iteration(pca_params, covariance, result, backend);
|
|
||||||
|
|
||||||
// Free ggml context and backend
|
|
||||||
ggml_free(ctx);
|
|
||||||
ggml_backend_free(backend);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
static void run_pca(
|
|
||||||
struct pca_params & params,
|
|
||||||
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
|
|
||||||
const std::vector<struct ggml_tensor *> & v_output) {
|
|
||||||
|
|
||||||
for (size_t i = 0; i < v_input.size(); i++) {
|
|
||||||
struct pca_result result;
|
|
||||||
run_single_pca(params, v_input[i], result);
|
|
||||||
ggml_backend_tensor_get(result.principal_component, v_output[i]->data, 0, ggml_nbytes(result.principal_component));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// end namespace
|
|
||||||
}
|
|
Loading…
Reference in New Issue
Block a user