mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 12:10:18 +00:00
add convert script
This commit is contained in:
parent
79e2982788
commit
847135aaa2
149
convert_lora_to_gguf.py
Executable file
149
convert_lora_to_gguf.py
Executable file
@ -0,0 +1,149 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import argparse
|
||||||
|
import contextlib
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
import types
|
||||||
|
from enum import IntEnum
|
||||||
|
from pathlib import Path
|
||||||
|
from hashlib import sha256
|
||||||
|
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
|
||||||
|
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
# reuse model definitions from convert_hf_to_gguf.py
|
||||||
|
from convert_hf_to_gguf import Model
|
||||||
|
|
||||||
|
logger = logging.getLogger("lora-to-gguf")
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
all_models = ", ".join([arch for arch in Model._model_classes.keys()])
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Convert a huggingface model to a GGML compatible file")
|
||||||
|
parser.add_argument(
|
||||||
|
"--outfile", type=Path,
|
||||||
|
help="path to write to; default: based on input.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||||
|
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--arch", type=str,
|
||||||
|
help=f"Arch of the base model, must be one of: {all_models} (default: LlamaForCausalLM)",
|
||||||
|
default="LlamaForCausalLM"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--bigendian", action="store_true",
|
||||||
|
help="model is executed on big endian machine",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--verbose", action="store_true",
|
||||||
|
help="increase output verbosity",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--base", type=Path, required=True,
|
||||||
|
help="directory containing base model file",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"lora_path", type=Path,
|
||||||
|
help="directory containing LoRA adapter file",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = parse_args()
|
||||||
|
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||||
|
|
||||||
|
# FIXME: outtype is not working
|
||||||
|
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||||||
|
"f32": gguf.LlamaFileType.ALL_F32,
|
||||||
|
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||||
|
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||||
|
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||||
|
"auto": gguf.LlamaFileType.GUESSED,
|
||||||
|
}
|
||||||
|
|
||||||
|
dir_base_model = args.base
|
||||||
|
dir_lora = args.lora_path
|
||||||
|
input_json = os.path.join(dir_lora, "adapter_config.json")
|
||||||
|
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||||
|
if args.outfile is not None:
|
||||||
|
fname_out = args.outfile
|
||||||
|
else:
|
||||||
|
# output in the same directory as the model by default
|
||||||
|
fname_out = dir_lora / 'ggml-lora.gguf'
|
||||||
|
|
||||||
|
if os.path.exists(input_model):
|
||||||
|
lora_model = torch.load(input_model, map_location="cpu")
|
||||||
|
else:
|
||||||
|
input_model = os.path.join(dir_lora, "adapter_model.safetensors")
|
||||||
|
# lazy import load_file only if lora is in safetensors format.
|
||||||
|
from safetensors.torch import load_file
|
||||||
|
lora_model = load_file(input_model, device="cpu")
|
||||||
|
|
||||||
|
# load base model
|
||||||
|
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||||
|
hparams = Model.load_hparams(dir_base_model)
|
||||||
|
with torch.inference_mode():
|
||||||
|
try:
|
||||||
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
|
except NotImplementedError:
|
||||||
|
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
model_instance = model_class(dir_base_model, ftype_map[args.outtype], fname_out, args.bigendian, False, False, None)
|
||||||
|
logger.info("Set model parameters")
|
||||||
|
model_instance.set_gguf_parameters()
|
||||||
|
|
||||||
|
# adapter_config = json.load(input_json)
|
||||||
|
model_instance.gguf_writer.add_string("training.type", "finetune_lora")
|
||||||
|
|
||||||
|
map_tensors: dict[str, Tensor] = {}
|
||||||
|
for tensor_name, tensor in lora_model.items():
|
||||||
|
orig_name = tensor_name.replace("base_model.model.", "")
|
||||||
|
orig_name = orig_name.replace(".lora_A.weight", ".weight")
|
||||||
|
orig_name = orig_name.replace(".lora_B.weight", ".weight")
|
||||||
|
is_lora_a = ".lora_A.weight" in tensor_name
|
||||||
|
is_lora_b = ".lora_B.weight" in tensor_name
|
||||||
|
if not is_lora_a and not is_lora_b:
|
||||||
|
logger.error(f"Unexpected name '{tensor_name}': Not a lora_A or lora_B tensor")
|
||||||
|
sys.exit(1)
|
||||||
|
dest_name = model_instance.map_tensor_name(orig_name)
|
||||||
|
dest_name = f"{dest_name}.lora_a" if is_lora_a else f"{dest_name}.lora_b"
|
||||||
|
# logger.info(f"{orig_name} --> {dest_name}")
|
||||||
|
map_tensors[dest_name] = tensor
|
||||||
|
|
||||||
|
# overwrite method
|
||||||
|
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||||
|
for name, tensor in map_tensors.items():
|
||||||
|
yield (name, tensor)
|
||||||
|
|
||||||
|
# overwrite method
|
||||||
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
|
return [(name, data_torch)]
|
||||||
|
|
||||||
|
model_instance.get_tensors = types.MethodType(get_tensors, model_instance)
|
||||||
|
model_instance.modify_tensors = types.MethodType(modify_tensors, model_instance)
|
||||||
|
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
|
||||||
|
logger.info("Exporting model...")
|
||||||
|
model_instance.write()
|
||||||
|
logger.info(f"Model successfully exported to {fname_out}")
|
Loading…
Reference in New Issue
Block a user