mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
Merge branch 'master' of https://github.com/ggerganov/llama.cpp
This commit is contained in:
commit
8540568c48
2
Makefile
2
Makefile
@ -545,7 +545,7 @@ llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h l
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
|
||||
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o
|
||||
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
@ -10,13 +10,9 @@
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
- ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252)
|
||||
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
|
||||
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
|
||||
**Devs should become familiar with the new API**
|
||||
- Local Falcon 180B inference on Mac Studio
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
|
||||
- LLaVA support: https://github.com/ggerganov/llama.cpp/pull/3436
|
||||
- ‼️ BPE tokenizer update: existing Falcon and Starcoder `.gguf` models will need to be reconverted: [#3252](https://github.com/ggerganov/llama.cpp/pull/3252)
|
||||
|
||||
----
|
||||
|
||||
|
@ -820,6 +820,27 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
return cparams;
|
||||
}
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch) {
|
||||
batch.n_tokens = 0;
|
||||
}
|
||||
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits) {
|
||||
batch.token [batch.n_tokens] = id;
|
||||
batch.pos [batch.n_tokens] = pos,
|
||||
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
|
||||
for (size_t i = 0; i < seq_ids.size(); ++i) {
|
||||
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
|
||||
}
|
||||
batch.logits [batch.n_tokens] = logits;
|
||||
|
||||
batch.n_tokens++;
|
||||
}
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
|
@ -70,6 +70,7 @@ struct gpt_params {
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
@ -124,10 +125,23 @@ void process_escapes(std::string& input);
|
||||
// Model utils
|
||||
//
|
||||
|
||||
// TODO: avoid tuplue, use struct
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
101
common/log.h
101
common/log.h
@ -579,38 +579,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
|
||||
[&tokens, &ctx]() \
|
||||
{ \
|
||||
std::stringstream buf; \
|
||||
buf << "[ "; \
|
||||
\
|
||||
bool first = true; \
|
||||
for (const auto &token : tokens) \
|
||||
{ \
|
||||
if (!first) \
|
||||
buf << ", "; \
|
||||
else \
|
||||
first = false; \
|
||||
\
|
||||
auto detokenized = llama_token_to_piece(ctx, token); \
|
||||
\
|
||||
detokenized.erase( \
|
||||
std::remove_if( \
|
||||
detokenized.begin(), \
|
||||
detokenized.end(), \
|
||||
[](const unsigned char c) { return !std::isprint(c); }), \
|
||||
detokenized.end()); \
|
||||
\
|
||||
buf \
|
||||
<< "'" << detokenized << "'" \
|
||||
<< ":" << std::to_string(token); \
|
||||
} \
|
||||
buf << " ]"; \
|
||||
\
|
||||
return buf.str(); \
|
||||
}() \
|
||||
.c_str()
|
||||
template <typename C, typename T>
|
||||
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (const auto &token : tokens)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename B>
|
||||
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (int i = 0; i < batch.n_tokens; ++i)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
|
||||
|
@ -1,64 +1,81 @@
|
||||
#include "sampling.h"
|
||||
|
||||
llama_sampling_context::~llama_sampling_context() {
|
||||
for (auto & it : sequence_contexts) {
|
||||
if (it.second.grammar != NULL) {
|
||||
llama_grammar_free(it.second.grammar);
|
||||
it.second.grammar = NULL;
|
||||
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
|
||||
result->params = params.sampling_params;
|
||||
result->grammar = nullptr;
|
||||
|
||||
// if there is a grammar, parse it
|
||||
if (!params.grammar.empty()) {
|
||||
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (result->parsed_grammar.rules.empty()) {
|
||||
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||
|
||||
result->grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
result->prev.resize(params.n_ctx);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar) {
|
||||
llama_sampling_context result;
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
|
||||
result.params = params.sampling_params;
|
||||
result.grammar = grammar;
|
||||
return result;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
// Note: Creates the context if it doesn't exist, so this always return something.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it != ctx_sampling.sequence_contexts.end()) {
|
||||
return it->second;
|
||||
void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
llama_sampler_sequence_context new_ctx = {
|
||||
2.0f * ctx_sampling.params.mirostat_tau,
|
||||
ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
|
||||
};
|
||||
return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
|
||||
|
||||
if (!ctx->parsed_grammar.rules.empty()) {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
||||
|
||||
ctx->grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||
ctx->cur.clear();
|
||||
}
|
||||
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it == ctx_sampling.sequence_contexts.end()) return false;
|
||||
if (it->second.grammar != NULL) {
|
||||
llama_grammar_free(it->second.grammar);
|
||||
it->second.grammar = NULL;
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
dst->grammar = nullptr;
|
||||
}
|
||||
ctx_sampling.sequence_contexts.erase(it);
|
||||
return true;
|
||||
|
||||
if (src->grammar) {
|
||||
dst->grammar = llama_grammar_copy(src->grammar);
|
||||
}
|
||||
|
||||
dst->prev = src->prev;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx,
|
||||
llama_seq_id seq) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx_main);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling.params;
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
@ -73,41 +90,45 @@ llama_token llama_sampling_sample(
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
if (ctx_cfg) {
|
||||
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
if (!prev.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx_main)];
|
||||
const int last_n_repeat = std::min(std::min((int)prev.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
llama_sample_repetition_penalty(ctx_main, &cur_p,
|
||||
prev.data() + prev.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
llama_sample_frequency_and_presence_penalties(ctx_main, &cur_p,
|
||||
prev.data() + prev.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx_main)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
@ -115,52 +136,58 @@ llama_token llama_sampling_sample(
|
||||
}
|
||||
}
|
||||
|
||||
llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp (ctx_main, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
(void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
// LOG("top %d candidates:\n", n_top);
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
// for (int i = 0; i < n_top; i++) {
|
||||
// const llama_token id = cur_p.data[i].id;
|
||||
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
||||
// }
|
||||
//}
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id) {
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(id);
|
||||
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
||||
}
|
||||
}
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
@ -34,75 +36,64 @@ typedef struct llama_sampling_params {
|
||||
|
||||
} llama_sampling_params;
|
||||
|
||||
// per-sequence sampler context
|
||||
typedef struct llama_sampler_sequence_context {
|
||||
float mirostat_mu; // mirostat sampler state
|
||||
llama_grammar * grammar;
|
||||
} llama_sampler_sequence_context;
|
||||
|
||||
// general sampler context
|
||||
typedef struct llama_sampling_context {
|
||||
~llama_sampling_context();
|
||||
|
||||
// parameters that will be used for sampling and when creating
|
||||
// new llama_sampler_sequence_context instances
|
||||
// TODO: move to llama.h
|
||||
struct llama_sampling_context {
|
||||
// parameters that will be used for sampling
|
||||
llama_sampling_params params;
|
||||
|
||||
// map of sequence ids to sampler contexts
|
||||
std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
|
||||
// mirostat sampler state
|
||||
float mirostat_mu;
|
||||
|
||||
// when non-NULL, new instances of llama_sampler_sequence_context
|
||||
// will get a copy of the grammar here
|
||||
// note: only the pointer is stored here, it is not a copy of
|
||||
// the grammar and shouldn't be freed
|
||||
llama_grammar * grammar;
|
||||
} llama_sampling_context;
|
||||
|
||||
// internal
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar = NULL);
|
||||
struct llama_sampling_context * llama_sampling_init(const struct gpt_params & params);
|
||||
|
||||
// Fetches the sampler context for the specified sequence id (defaults to 0).
|
||||
// If the context for that sequence id doesn't already exist, it will be created with
|
||||
// default values based on the parameters in the ctx_sampling argument.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
|
||||
// Reset the sampler context for the supplied sequence id (defaults to 0).
|
||||
// This is necessary to reuse a sequence id or free memory used by sequences
|
||||
// that are no longer required.
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
// Reset the sampler context
|
||||
// - clear prev tokens
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_context_reset when a sequence ends
|
||||
// llama_sampling_reset when a sequence ends
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - ctx_main: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
// - seq: sequence id to associate sampler state with
|
||||
// - ctx_cfg: context to use for classifier-free guidance
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx = 0,
|
||||
llama_seq_id seq = 0);
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id);
|
||||
|
@ -114,7 +114,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0);
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
||||
|
||||
// decode in batches of ctx_params.n_batch tokens
|
||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||
@ -123,11 +123,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
@ -143,13 +144,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// warm up
|
||||
{
|
||||
batch.n_tokens = 16;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
@ -174,13 +170,12 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
batch.n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
const int n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
@ -204,13 +199,10 @@ int main(int argc, char ** argv) {
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
batch.n_tokens = pl;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
batch.token[j] = 0;
|
||||
batch.pos[j] = pp + i;
|
||||
batch.seq_id[j] = j;
|
||||
batch.logits[j] = true;
|
||||
llama_batch_add(batch, 0, pp + i, { j }, true);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
|
@ -69,7 +69,7 @@ for id: llama_token in tokens {
|
||||
|
||||
print("\n")
|
||||
|
||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
|
||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0, 1)
|
||||
defer {
|
||||
llama_batch_free(batch)
|
||||
}
|
||||
@ -80,7 +80,12 @@ batch.n_tokens = Int32(tokens.count)
|
||||
for (i, token) in tokens.enumerated() {
|
||||
batch.token[i] = token
|
||||
batch.pos[i] = Int32(i)
|
||||
batch.seq_id[i] = 0
|
||||
batch.n_seq_id[i] = 1
|
||||
// batch.seq_id[i][0] = 0
|
||||
// TODO: is this the proper way to do this?
|
||||
if let seq_id = batch.seq_id[i] {
|
||||
seq_id[0] = 0
|
||||
}
|
||||
batch.logits[i] = 0
|
||||
}
|
||||
|
||||
@ -169,7 +174,10 @@ while n_cur <= n_len {
|
||||
// push this new token for next evaluation
|
||||
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
|
||||
batch.n_seq_id[Int(batch.n_tokens)] = 1
|
||||
if let seq_id = batch.seq_id[Int(batch.n_tokens)] {
|
||||
seq_id[0] = Int32(i)
|
||||
}
|
||||
batch.logits[Int(batch.n_tokens)] = 1
|
||||
|
||||
i_batch[i] = batch.n_tokens
|
||||
|
@ -97,20 +97,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch with size 512
|
||||
// create a llama_batch
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = tokens_list.size();
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
batch.token[i] = tokens_list[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
@ -146,7 +141,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
// prepare the next batch
|
||||
batch.n_tokens = 0;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
@ -198,15 +193,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
|
||||
// push this new token for next evaluation
|
||||
batch.token [batch.n_tokens] = new_token_id;
|
||||
batch.pos [batch.n_tokens] = n_cur;
|
||||
batch.seq_id[batch.n_tokens] = i;
|
||||
batch.logits[batch.n_tokens] = true;
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
batch.n_tokens += 1;
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
@ -79,7 +79,7 @@ bool eval_float(void * model, float * input, int N){
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
@ -257,12 +257,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
@ -273,10 +273,10 @@ int main(int argc, char ** argv) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
@ -294,8 +294,8 @@ int main(int argc, char ** argv) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
@ -388,9 +388,6 @@ int main(int argc, char ** argv) {
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||
if (params.infill) {
|
||||
printf("\n************\n");
|
||||
@ -433,11 +430,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
@ -484,7 +477,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
}
|
||||
|
||||
@ -512,7 +505,7 @@ int main(int argc, char ** argv) {
|
||||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
@ -535,7 +528,7 @@ int main(int argc, char ** argv) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
@ -554,12 +547,11 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@ -575,8 +567,8 @@ int main(int argc, char ** argv) {
|
||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(embd_inp[n_consumed]);
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(embd_inp[n_consumed]);
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
@ -608,7 +600,7 @@ int main(int argc, char ** argv) {
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
|
||||
// deal with eot token in infill mode
|
||||
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||
if ((ctx_sampling->prev.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||
if(is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||
@ -675,7 +667,7 @@ int main(int argc, char ** argv) {
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of text token in interactive mode
|
||||
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||
else if (ctx_sampling->prev.back() == llama_token_eos(ctx)) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -727,7 +719,7 @@ int main(int argc, char ** argv) {
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
|
||||
|
@ -17,7 +17,7 @@ inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
@ -127,7 +127,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
||||
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
|
||||
|
||||
|
@ -3,7 +3,6 @@
|
||||
#include "console.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
@ -245,12 +244,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
@ -261,10 +260,10 @@ int main(int argc, char ** argv) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
@ -323,8 +322,8 @@ int main(int argc, char ** argv) {
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
@ -421,35 +420,6 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
struct llama_grammar * grammar = NULL;
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
return 1;
|
||||
}
|
||||
LOG_TEE("%s: grammar:\n", __func__);
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
@ -489,11 +459,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
@ -540,7 +506,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
LOG("clear session path\n");
|
||||
path_session.clear();
|
||||
@ -570,7 +536,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
|
||||
if (ctx_guidance) {
|
||||
int input_size = 0;
|
||||
llama_token * input_buf = NULL;
|
||||
@ -592,7 +557,7 @@ int main(int argc, char ** argv) {
|
||||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
@ -615,7 +580,7 @@ int main(int argc, char ** argv) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
@ -645,12 +610,11 @@ int main(int argc, char ** argv) {
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id);
|
||||
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@ -666,8 +630,14 @@ int main(int argc, char ** argv) {
|
||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||
while ((int) embd_inp.size() > n_consumed) {
|
||||
embd.push_back(embd_inp[n_consumed]);
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(embd_inp[n_consumed]);
|
||||
|
||||
// GG: I'm not sure it's a good idea to push the prompt tokens into the sampling context
|
||||
// Most likely will remove this in the future to avoid exposing "prev"
|
||||
// Same thing is done in "server". If we stop pushing the prompt tokens, then the repetition
|
||||
// penalty will be applied only based on the tokens generated by the model.
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(embd_inp[n_consumed]);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
break;
|
||||
@ -700,7 +670,7 @@ int main(int argc, char ** argv) {
|
||||
// check for reverse prompt
|
||||
if (!params.antiprompt.empty()) {
|
||||
std::string last_output;
|
||||
for (auto id : last_tokens) {
|
||||
for (auto id : ctx_sampling->prev) {
|
||||
last_output += llama_token_to_piece(ctx, id);
|
||||
}
|
||||
|
||||
@ -729,7 +699,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||
if (ctx_sampling->prev.back() == llama_token_eos(ctx)) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@ -801,7 +771,7 @@ int main(int argc, char ** argv) {
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
@ -830,15 +800,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
// reset grammar state if we're restarting generation
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(),
|
||||
parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
llama_sampling_reset(ctx_sampling);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@ -870,9 +832,7 @@ int main(int argc, char ** argv) {
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
}
|
||||
llama_sampling_free(ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
|
@ -51,6 +51,12 @@ static std::vector<std::string> k_prompts = {
|
||||
};
|
||||
|
||||
struct client {
|
||||
~client() {
|
||||
if (ctx_sampling) {
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
}
|
||||
|
||||
int32_t id = 0;
|
||||
|
||||
llama_seq_id seq_id = -1;
|
||||
@ -68,7 +74,7 @@ struct client {
|
||||
std::string prompt;
|
||||
std::string response;
|
||||
|
||||
std::vector<llama_token> tokens_prev;
|
||||
struct llama_sampling_context * ctx_sampling = nullptr;
|
||||
};
|
||||
|
||||
static void print_date_time() {
|
||||
@ -125,8 +131,6 @@ int main(int argc, char ** argv) {
|
||||
params.logits_all = true;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
@ -147,20 +151,15 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "\n\n");
|
||||
fflush(stderr);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
std::vector<client> clients(n_clients);
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.tokens_prev.resize(std::max(256, params.n_predict));
|
||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
||||
client.ctx_sampling = llama_sampling_init(params);
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
||||
const int32_t n_tokens_system = tokens_system.size();
|
||||
@ -169,7 +168,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
||||
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0);
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, 1);
|
||||
|
||||
int32_t n_total_prompt = 0;
|
||||
int32_t n_total_gen = 0;
|
||||
@ -184,13 +183,8 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
batch.n_tokens = n_tokens_system;
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = tokens_system[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
@ -209,7 +203,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("Processing requests ...\n\n");
|
||||
|
||||
while (true) {
|
||||
batch.n_tokens = 0;
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
for (auto & client : clients) {
|
||||
@ -217,15 +211,11 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
batch.token [batch.n_tokens] = client.sampled;
|
||||
batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded;
|
||||
batch.seq_id[batch.n_tokens] = client.id;
|
||||
batch.logits[batch.n_tokens] = true;
|
||||
|
||||
client.n_decoded += 1;
|
||||
client.i_batch = batch.n_tokens;
|
||||
|
||||
batch.n_tokens += 1;
|
||||
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
|
||||
|
||||
client.n_decoded += 1;
|
||||
}
|
||||
|
||||
if (batch.n_tokens == 0) {
|
||||
@ -250,18 +240,14 @@ int main(int argc, char ** argv) {
|
||||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0);
|
||||
llama_sampling_reset(client.ctx_sampling);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
std::vector<llama_token> tokens_prompt;
|
||||
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
||||
|
||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||
batch.token [batch.n_tokens] = tokens_prompt[i];
|
||||
batch.pos [batch.n_tokens] = i + n_tokens_system;
|
||||
batch.seq_id[batch.n_tokens] = client.id;
|
||||
batch.logits[batch.n_tokens] = false;
|
||||
batch.n_tokens += 1;
|
||||
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
@ -304,11 +290,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
@ -341,7 +328,9 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id);
|
||||
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
|
||||
|
||||
llama_sampling_accept(client.ctx_sampling, ctx, id);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@ -349,11 +338,8 @@ int main(int argc, char ** argv) {
|
||||
client.t_start_gen = ggml_time_us();
|
||||
}
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
client.tokens_prev.erase(client.tokens_prev.begin());
|
||||
client.tokens_prev.push_back(id);
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
client.response += token_str;
|
||||
client.sampled = id;
|
||||
|
||||
@ -386,7 +372,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_total_prompt += client.n_prompt;
|
||||
n_total_gen += client.n_decoded;
|
||||
llama_sampling_context_reset(ctx_sampling, client.seq_id);
|
||||
|
||||
client.seq_id = -1;
|
||||
}
|
||||
|
||||
|
@ -3,9 +3,6 @@
|
||||
#include "build-info.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include "../llava/clip.h"
|
||||
#include "stb_image.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
||||
@ -311,14 +308,18 @@ struct llama_client_slot
|
||||
int32_t n_remaining = -1;
|
||||
|
||||
json prompt;
|
||||
std::string generated_text = "";
|
||||
int num_tokens_predicted = 0;
|
||||
llama_token sampled;
|
||||
std::vector<llama_token> cache_tokens;
|
||||
std::vector<completion_token_output> generated_token_probs;
|
||||
int sent_tokens = 0;
|
||||
slot_state state = IDLE;
|
||||
slot_command command = NONE;
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> last_n_tokens;
|
||||
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
gpt_params params;
|
||||
llama_sampling_context ctx_sampling;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar *grammar = nullptr;
|
||||
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
@ -476,20 +477,32 @@ struct llama_server_context
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
{
|
||||
params = params_;
|
||||
if(!params.mmproj.empty()) {
|
||||
multimodal = true;
|
||||
LOG_TEE("Multi Modal Mode Enabled");
|
||||
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
||||
if(clp_ctx == nullptr) {
|
||||
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
||||
return false;
|
||||
}
|
||||
params.antiprompt.clear();
|
||||
params.grammar.clear();
|
||||
num_prompt_tokens = 0;
|
||||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(n_ctx);
|
||||
generated_token_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
stopped_limit = false;
|
||||
stopping_word = "";
|
||||
multibyte_pending = 0;
|
||||
n_remain = 0;
|
||||
n_past = 0;
|
||||
|
||||
if(params.n_ctx < 2048) { // request larger context for the image embedding
|
||||
params.n_ctx = 2048;
|
||||
}
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
bool loadModel(const gpt_params ¶ms_)
|
||||
{
|
||||
params = params_;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr)
|
||||
{
|
||||
@ -508,7 +521,8 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
n_vocab = llama_n_vocab(model);
|
||||
last_n_tokens.resize(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -583,24 +597,29 @@ struct llama_server_context
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
llama_client_slot* getSlot(int id) {
|
||||
for (llama_client_slot & slot : slots)
|
||||
{
|
||||
if ((id == -1 && slot.available()) || slot.id == id)
|
||||
{
|
||||
return &slot;
|
||||
bool loadGrammar()
|
||||
{
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
bool launchSlot(llama_client_slot* &slot) {
|
||||
if(!slot->loadGrammar(llama_token_eos(ctx))) {
|
||||
return false;
|
||||
{
|
||||
auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
all_slots_are_idle = false;
|
||||
slot->command = LOAD_PROMPT;
|
||||
LOG_TEE("slot %i is processing\n", slot->id);
|
||||
ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -646,253 +665,119 @@ struct llama_server_context
|
||||
// release all slots
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
slot.release();
|
||||
params.n_keep = (int)num_prompt_tokens;
|
||||
}
|
||||
waitAllAreIdle();
|
||||
all_slots_are_idle = true;
|
||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||
|
||||
// wait until system prompt load
|
||||
update_system_prompt = true;
|
||||
while(update_system_prompt) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||
{
|
||||
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||
// todo we probably want to cut from both sides
|
||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", params.n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
});
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
// system prompt loaded, continue
|
||||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
embd = prompt_tokens;
|
||||
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", n_past},
|
||||
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
|
||||
has_next_token = true;
|
||||
}
|
||||
|
||||
void processSystemPromptData(json sys_props) {
|
||||
system_prompt = sys_props.value("prompt", "");
|
||||
user_name = sys_props.value("anti_prompt", "");
|
||||
assistant_name = sys_props.value("assistant_name", "");
|
||||
if(slots.size() > 0) {
|
||||
notifySystemPromptChanged();
|
||||
} else {
|
||||
update_system_prompt = true;
|
||||
}
|
||||
}
|
||||
|
||||
void waitAllAreIdle() {
|
||||
bool wait = true;
|
||||
while(wait) {
|
||||
wait = false;
|
||||
for (auto &slot : slots)
|
||||
{
|
||||
if (!slot.available())
|
||||
{
|
||||
wait = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
|
||||
const stop_type type, llama_client_slot &slot)
|
||||
void loadPrompt()
|
||||
{
|
||||
size_t stop_pos = std::string::npos;
|
||||
for (const std::string &word : slot.params.antiprompt)
|
||||
{
|
||||
size_t pos;
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
const size_t tmp = word.size() + last_token_size;
|
||||
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
||||
pos = text.find(word, from_pos);
|
||||
}
|
||||
else
|
||||
{
|
||||
pos = find_partial_stop_string(word, text);
|
||||
}
|
||||
if (pos != std::string::npos &&
|
||||
(stop_pos == std::string::npos || pos < stop_pos))
|
||||
{
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
slot.stopped_word = true;
|
||||
slot.stopping_word = word;
|
||||
slot.has_next_token = false;
|
||||
}
|
||||
stop_pos = pos;
|
||||
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
||||
|
||||
}
|
||||
}
|
||||
return stop_pos;
|
||||
}
|
||||
num_prompt_tokens = prompt_tokens.size();
|
||||
|
||||
bool processToken(completion_token_output & result, llama_client_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
||||
slot.sampled = result.tok;
|
||||
|
||||
// search stop word and delete it
|
||||
slot.generated_text += token_str;
|
||||
slot.has_next_token = true;
|
||||
|
||||
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
|
||||
const std::string str_test = slot.generated_text.substr(pos);
|
||||
bool is_stop_full = false;
|
||||
size_t stop_pos = findStoppingStrings(str_test, token_str.size(), STOP_FULL, slot);
|
||||
if (stop_pos != std::string::npos) {
|
||||
is_stop_full = true;
|
||||
slot.generated_text.erase(
|
||||
slot.generated_text.begin() + pos + stop_pos,
|
||||
slot.generated_text.end());
|
||||
pos = std::min(slot.sent_count, slot.generated_text.size());
|
||||
} else {
|
||||
is_stop_full = false;
|
||||
stop_pos = findStoppingStrings(str_test, token_str.size(),
|
||||
STOP_PARTIAL, slot);
|
||||
}
|
||||
|
||||
// check if there is any token to predict
|
||||
if(stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
|
||||
// no send the stop word in the response
|
||||
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
||||
slot.sent_count += result.text_to_send.size();
|
||||
// add the token to slot queue and cache
|
||||
}
|
||||
slot.addTokenString(result);
|
||||
if (slot.multibyte_pending > 0)
|
||||
{
|
||||
slot.multibyte_pending -= token_str.size();
|
||||
}
|
||||
else if (token_str.size() == 1)
|
||||
{
|
||||
const char c = token_str[0];
|
||||
// 2-byte characters: 110xxxxx 10xxxxxx
|
||||
if ((c & 0xE0) == 0xC0)
|
||||
{
|
||||
slot.multibyte_pending = 1;
|
||||
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF0) == 0xE0)
|
||||
{
|
||||
slot.multibyte_pending = 2;
|
||||
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF8) == 0xF0)
|
||||
{
|
||||
slot.multibyte_pending = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
slot.multibyte_pending = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (slot.multibyte_pending > 0 && !slot.has_next_token)
|
||||
{
|
||||
slot.has_next_token = true;
|
||||
}
|
||||
|
||||
// check the limits
|
||||
if (
|
||||
slot.n_decoded > 2 && slot.has_next_token && !slot.hasBudget(params))
|
||||
if (params.n_keep < 0)
|
||||
{
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false;
|
||||
}
|
||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(ctx)){
|
||||
slot.stopped_eos = true;
|
||||
slot.has_next_token = false;
|
||||
LOG_VERBOSE("eos token found", {});
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
{
|
||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
});
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
LOG_VERBOSE("next token", {
|
||||
{"token", result.tok},
|
||||
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
||||
{"has_next_token", slot.has_next_token},
|
||||
{"n_remain", slot.n_remaining},
|
||||
{"num_tokens_predicted", slot.num_tokens_predicted},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
{"stopped_word", slot.stopped_word},
|
||||
{"stopped_limit", slot.stopped_limit},
|
||||
{"stopping_word", slot.stopping_word},
|
||||
});
|
||||
return slot.has_next_token; // continue
|
||||
}
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
|
||||
bool processImages(llama_client_slot &slot) {
|
||||
for(slot_image &img : slot.images) {
|
||||
if(!img.request_encode_image) {
|
||||
continue;
|
||||
}
|
||||
clip_image_f32 img_res;
|
||||
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true)) {
|
||||
LOG_TEE("Error processing the given image");
|
||||
clip_free(clp_ctx);
|
||||
return false;
|
||||
}
|
||||
img.image_tokens = clip_n_patches(clp_ctx);
|
||||
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
|
||||
if (!img.image_embedding) {
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
clip_free(clp_ctx);
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - encoding image %i\n", slot.id, img.id);
|
||||
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding)) {
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
return false;
|
||||
}
|
||||
img.request_encode_image = false;
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
n_past--;
|
||||
}
|
||||
return slot.images.size() > 0;
|
||||
}
|
||||
|
||||
// for multiple images processing
|
||||
bool ingestImages(llama_client_slot &slot, int n_batch) {
|
||||
int image_idx = 0;
|
||||
while(image_idx < slot.images.size()) {
|
||||
slot_image img = slot.images[image_idx];
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
// process prefix prompt
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
if (llama_decode(ctx, batch_view)) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", n_past},
|
||||
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
|
||||
// process image with llm
|
||||
for (int i = 0; i < img.image_tokens; i += n_batch) {
|
||||
int n_eval = img.image_tokens - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch_img = {int32_t(n_eval), nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch_img)) {
|
||||
LOG_TEE("%s : failed to eval image\n", __func__);
|
||||
return false;
|
||||
}
|
||||
slot.n_past += n_eval;
|
||||
}
|
||||
image_idx++;
|
||||
|
||||
// append prefix of next image
|
||||
batch.n_tokens = 0;
|
||||
const auto json_prompt = (image_idx >= slot.images.size()) ?
|
||||
slot.params.input_suffix : // no more images, then process suffix prompt
|
||||
(json)(slot.images[image_idx].prefix_prompt);
|
||||
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
||||
for (int i = 0; i < append_tokens.size(); ++i) {
|
||||
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
batch.n_tokens += 1;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
has_next_token = true;
|
||||
}
|
||||
|
||||
bool updateSlots() {
|
||||
@ -929,198 +814,159 @@ struct llama_server_context
|
||||
|
||||
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
||||
|
||||
slot.n_past -= n_discard;
|
||||
|
||||
slot.truncated = true;
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
});
|
||||
}
|
||||
truncated = true;
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
});
|
||||
}
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
for (auto & slot : slots) {
|
||||
// release the slot
|
||||
if (slot.state == PROCESSING && slot.command == RELEASE && !slot.hasNewToken())
|
||||
bool tg = true;
|
||||
while (n_past < embd.size())
|
||||
{
|
||||
int n_eval = (int)embd.size() - n_past;
|
||||
tg = n_eval == 1;
|
||||
if (n_eval > params.n_batch)
|
||||
{
|
||||
slot.state = slot.params.cache_prompt ? SLEEPING : IDLE;
|
||||
if(slot.state == SLEEPING) {
|
||||
LOG_TEE("slot %i has %i tokens in cache.\n", slot.id, slot.cache_tokens.size());
|
||||
} else {
|
||||
LOG_TEE("slot %i released\n", slot.id);
|
||||
}
|
||||
slot.command = NONE;
|
||||
continue;
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
kv_cache_free -= slot.num_prompt_tokens;
|
||||
|
||||
if (
|
||||
slot.state == IDLE ||
|
||||
slot.state == SLEEPING ||
|
||||
slot.command == RELEASE) {
|
||||
continue;
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||
{
|
||||
LOG_ERROR("failed to eval", {
|
||||
{"n_eval", n_eval},
|
||||
{"n_past", n_past},
|
||||
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
has_next_token = false;
|
||||
return result;
|
||||
}
|
||||
|
||||
slot.i_batch = batch.n_tokens;
|
||||
|
||||
llama_batch_add(batch, slot.sampled, num_tokens_system + slot.n_past, { slot.id }, true);
|
||||
|
||||
slot.n_decoded += 1;
|
||||
slot.n_past += 1;
|
||||
n_past += n_eval;
|
||||
}
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
|
||||
// assign workload to the slots
|
||||
if (params.cont_batching || batch.n_tokens == 0) {
|
||||
for (auto & slot : slots) {
|
||||
// need process the prompt
|
||||
if ((slot.state == IDLE || slot.state == SLEEPING) && slot.command == LOAD_PROMPT) {
|
||||
slot.state = PROCESSING;
|
||||
slot.command = NONE;
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
slot.t_start_process_prompt = ggml_time_us();
|
||||
slot.t_start_genereration = 0;
|
||||
if (params.n_predict == 0)
|
||||
{
|
||||
has_next_token = false;
|
||||
result.tok = llama_token_eos(ctx);
|
||||
return result;
|
||||
}
|
||||
|
||||
if(slot.infill) {
|
||||
bool suff_rm_leading_spc = true;
|
||||
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
|
||||
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
|
||||
const int space_token = 29871;
|
||||
if (suff_rm_leading_spc && suffix_tokens[0] == space_token) {
|
||||
suffix_tokens.erase(suffix_tokens.begin());
|
||||
}
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||
prompt_tokens = prefix_tokens;
|
||||
} else {
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
||||
}
|
||||
{
|
||||
// out of user input, sample next token
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
|
||||
slot.num_prompt_tokens = prompt_tokens.size();
|
||||
result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates);
|
||||
|
||||
if(!slot.params.cache_prompt) {
|
||||
std::fill(slot.ctx_sampling->prev.begin(), slot.ctx_sampling->prev.end(), 0);
|
||||
slot.n_past = 0;
|
||||
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
|
||||
} else {
|
||||
if (slot.params.n_keep < 0)
|
||||
{
|
||||
slot.params.n_keep = (int)slot.num_prompt_tokens;
|
||||
}
|
||||
slot.params.n_keep = std::min(max_ctx_per_slot - 4, slot.params.n_keep);
|
||||
//if input prompt is too big, truncate like normal
|
||||
if (slot.num_prompt_tokens >= (size_t)max_ctx_per_slot)
|
||||
{
|
||||
// applied bug of #3661
|
||||
const int n_left = max_ctx_per_slot - slot.params.n_keep;
|
||||
const int n_block_size = n_left / 2;
|
||||
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
|
||||
// Use half the left-over space in the context for the prompt
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.end() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", max_ctx_per_slot},
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
});
|
||||
slot.truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
slot.num_prompt_tokens = prompt_tokens.size();
|
||||
GGML_ASSERT(slot.num_prompt_tokens < (size_t)max_ctx_per_slot);
|
||||
}
|
||||
const size_t ps = slot.num_prompt_tokens;
|
||||
std::fill(slot.ctx_sampling->prev.begin(), slot.ctx_sampling->prev.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), slot.ctx_sampling->prev.end() - ps);
|
||||
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
||||
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
|
||||
LOG_TEE("slot %i - in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
||||
}
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, num_tokens_system + slot.n_past, -1);
|
||||
const int32_t n_probs = params.sampling_params.n_probs;
|
||||
if (params.sampling_params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||
{
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
|
||||
if (slot.n_past == slot.num_prompt_tokens) {
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||
slot.n_past--;
|
||||
}
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
|
||||
});
|
||||
|
||||
bool ingest_images = processImages(slot); // has images?
|
||||
|
||||
// process the prefix of first image
|
||||
std::vector<llama_token> prefix_tokens = ingest_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
|
||||
for (; slot.n_past < prefix_tokens.size(); ++slot.n_past) {
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], num_tokens_system + slot.n_past, { slot.id }, false);
|
||||
}
|
||||
|
||||
if(ingest_images && !ingestImages(slot, n_batch)) {
|
||||
LOG_TEE("failed processing images\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
if (batch.n_tokens > 0) {
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
}
|
||||
|
||||
slot.n_decoded = 0;
|
||||
slot.i_batch = batch.n_tokens - 1;
|
||||
}
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(result.tok);
|
||||
if (tg) {
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
}
|
||||
|
||||
if (batch.n_tokens == 0) {
|
||||
all_slots_are_idle = true;
|
||||
return true;
|
||||
// add it to the context
|
||||
embd.push_back(result.tok);
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
|
||||
{
|
||||
// stopping_word = llama_token_to_piece(ctx, embd.back());
|
||||
has_next_token = false;
|
||||
stopped_eos = true;
|
||||
LOG_VERBOSE("eos token found", {});
|
||||
return result;
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
has_next_token = params.n_predict == -1 || n_remain != 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
if (n_batch == 1 || ret < 0) {
|
||||
// if you get here, it means the KV cache is full - try increasing it via the context size
|
||||
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
||||
return false;
|
||||
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
|
||||
const stop_type type)
|
||||
{
|
||||
size_t stop_pos = std::string::npos;
|
||||
for (const std::string &word : params.antiprompt)
|
||||
{
|
||||
size_t pos;
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
const size_t tmp = word.size() + last_token_size;
|
||||
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
||||
pos = text.find(word, from_pos);
|
||||
}
|
||||
else
|
||||
{
|
||||
pos = find_partial_stop_string(word, text);
|
||||
}
|
||||
if (pos != std::string::npos &&
|
||||
(stop_pos == std::string::npos || pos < stop_pos))
|
||||
{
|
||||
if (type == STOP_FULL)
|
||||
{
|
||||
stopping_word = word;
|
||||
stopped_word = true;
|
||||
has_next_token = false;
|
||||
}
|
||||
stop_pos = pos;
|
||||
}
|
||||
}
|
||||
return stop_pos;
|
||||
}
|
||||
|
||||
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
|
||||
completion_token_output doCompletion()
|
||||
{
|
||||
auto token_with_probs = nextToken();
|
||||
|
||||
// retry with half the batch size to try to find a free slot in the KV cache
|
||||
n_batch /= 2;
|
||||
i -= n_batch;
|
||||
continue;
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
|
||||
if (params.sampling_params.n_probs > 0)
|
||||
{
|
||||
generated_token_probs.push_back(token_with_probs);
|
||||
}
|
||||
|
||||
if (multibyte_pending > 0)
|
||||
{
|
||||
multibyte_pending -= token_text.size();
|
||||
}
|
||||
else if (token_text.size() == 1)
|
||||
{
|
||||
const char c = token_text[0];
|
||||
// 2-byte characters: 110xxxxx 10xxxxxx
|
||||
if ((c & 0xE0) == 0xC0)
|
||||
{
|
||||
multibyte_pending = 1;
|
||||
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF0) == 0xE0)
|
||||
{
|
||||
multibyte_pending = 2;
|
||||
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
||||
}
|
||||
else if ((c & 0xF8) == 0xF0)
|
||||
{
|
||||
multibyte_pending = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
multibyte_pending = 0;
|
||||
}
|
||||
|
||||
for (auto & slot : slots) {
|
||||
@ -1779,77 +1625,9 @@ static void parse_options_completion(const json &body, llama_client_slot* slot,
|
||||
}
|
||||
}
|
||||
|
||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama, slot));
|
||||
if(!llama.multimodal) {
|
||||
return;
|
||||
}
|
||||
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar);
|
||||
|
||||
const auto &images_data = body.find("image_data");
|
||||
if (images_data != body.end() && images_data->is_array())
|
||||
{
|
||||
for (const auto &img : *images_data)
|
||||
{
|
||||
slot_image img_sl;
|
||||
std::string data_b64 = img["data"].get<std::string>();
|
||||
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
|
||||
int width, height, channels;
|
||||
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
|
||||
data_b64.clear();
|
||||
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
|
||||
if(!data) {
|
||||
LOG_TEE("slot %i - failed to load image id= %i\n", slot->id, img_sl.id);
|
||||
return;
|
||||
}
|
||||
LOG_TEE("slot %i - image id= %i loaded (%i x %i)\n", slot->id, img_sl.id, width, height);
|
||||
img_sl.img_data.nx = width;
|
||||
img_sl.img_data.ny = height;
|
||||
img_sl.img_data.size = width * height * 3;
|
||||
img_sl.img_data.data = new uint8_t[width * height * 3]();
|
||||
memcpy(img_sl.img_data.data, data, width * height * 3);
|
||||
stbi_image_free(data);
|
||||
img_sl.request_encode_image = true;
|
||||
slot->images.push_back(img_sl);
|
||||
}
|
||||
// process prompt
|
||||
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
|
||||
if(slot->images.size() > 0 && !slot->prompt.is_array()) {
|
||||
std::string prompt = slot->prompt.get<std::string>();
|
||||
size_t pos = 0, begin_prefix = 0;
|
||||
std::string pattern = "[img-";
|
||||
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
|
||||
size_t end_prefix = pos;
|
||||
pos += pattern.length();
|
||||
size_t end_pos = prompt.find("]", pos);
|
||||
if (end_pos != std::string::npos) {
|
||||
std::string image_id = prompt.substr(pos, end_pos - pos);
|
||||
try {
|
||||
int img_id = std::stoi(image_id);
|
||||
bool found = false;
|
||||
for(slot_image &img : slot->images) {
|
||||
if(img.id == img_id) {
|
||||
found = true;
|
||||
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
|
||||
begin_prefix = end_pos + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(!found) {
|
||||
LOG_TEE("ERROR: Image with id %i not found.\n", img_id);
|
||||
slot->images.clear();
|
||||
return;
|
||||
}
|
||||
} catch (const std::invalid_argument& e) {
|
||||
LOG_TEE("Invalid image number id in prompt\n");
|
||||
slot->images.clear();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
slot->prompt = "";
|
||||
slot->params.input_suffix = prompt.substr(begin_prefix);
|
||||
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
|
||||
}
|
||||
}
|
||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||
}
|
||||
|
||||
static void parse_options_infill(const json &body, llama_server_context &llama, llama_client_slot *slot)
|
||||
@ -2366,6 +2144,10 @@ int main(int argc, char **argv)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (llama.grammar != nullptr) {
|
||||
llama_grammar_free(llama.grammar);
|
||||
}
|
||||
llama_backend_free();
|
||||
return 0;
|
||||
}
|
||||
|
@ -92,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||
// create a llama_batch with size 512
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(512, 0);
|
||||
llama_batch batch = llama_batch_init(512, 0, 1);
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = tokens_list.size();
|
||||
|
@ -2,13 +2,25 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct seq_draft {
|
||||
bool active = false;
|
||||
bool drafting = false;
|
||||
bool skip = false;
|
||||
|
||||
int i_batch_dft = 0;
|
||||
std::vector<int> i_batch_tgt;
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
|
||||
struct llama_sampling_context * ctx_sampling;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
@ -21,6 +33,13 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// max number of parallel drafting sequences (i.e. tree branches)
|
||||
const int n_seq_dft = params.n_parallel;
|
||||
|
||||
// TODO: make this configurable
|
||||
const float p_accept = 0.80f;
|
||||
const float p_split = 0.10f;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("speculative", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
@ -77,8 +96,6 @@ int main(int argc, char ** argv) {
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
// the 2 models should have the same vocab
|
||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
||||
const int n_vocab = llama_n_vocab(model_tgt);
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
@ -91,60 +108,58 @@ int main(int argc, char ** argv) {
|
||||
int n_past_tgt = inp.size();
|
||||
int n_past_dft = inp.size();
|
||||
|
||||
std::vector<llama_token> drafted;
|
||||
|
||||
std::vector<llama_token> last_tokens(n_ctx);
|
||||
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||
|
||||
for (auto & id : inp) {
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
// grammar stuff
|
||||
struct llama_grammar * grammar_dft = NULL;
|
||||
struct llama_grammar * grammar_tgt = NULL;
|
||||
// target model sampling context
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params);
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
// if requested - load the grammar, error checking is omitted for brevity
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
return 1;
|
||||
}
|
||||
params.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
||||
params.sampling_params.temp = std::max(0.01f, params.sampling_params.temp);
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].ctx_sampling = llama_sampling_init(params);
|
||||
}
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
||||
// sample from the last token of the prompt
|
||||
drafts[0].i_batch_tgt.resize(1);
|
||||
drafts[0].i_batch_tgt[0] = 0;
|
||||
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
// print current draft sequences
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto & tokens = drafts[s].tokens;
|
||||
|
||||
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
|
||||
}
|
||||
|
||||
int i_dft = 0;
|
||||
int s_keep = 0;
|
||||
|
||||
while (true) {
|
||||
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
// sample from the target model
|
||||
llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
||||
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
llama_sampling_accept(ctx_sampling, ctx_tgt, id);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
|
||||
|
||||
printf("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
@ -154,53 +169,67 @@ int main(int argc, char ** argv) {
|
||||
|
||||
++n_predict;
|
||||
|
||||
// check if the draft matches the target
|
||||
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
||||
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
||||
++n_accept;
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// the drafted token was rejected or we are out of drafted tokens
|
||||
|
||||
if (i_dft < (int) drafted.size()) {
|
||||
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
|
||||
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
|
||||
} else {
|
||||
LOG("out of drafted tokens\n");
|
||||
}
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
||||
++n_past_dft;
|
||||
|
||||
// heuristic for n_draft
|
||||
// check if the target token matches any of the drafts
|
||||
{
|
||||
const int n_draft_cur = (int) drafted.size();
|
||||
const bool all_accepted = i_dft == n_draft_cur;
|
||||
bool matches = false;
|
||||
|
||||
LOG("n_draft = %d\n", n_draft);
|
||||
LOG("n_draft_cur = %d\n", n_draft_cur);
|
||||
LOG("i_dft = %d\n", i_dft);
|
||||
LOG("all_accepted = %d\n", all_accepted);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (all_accepted && n_draft == n_draft_cur) {
|
||||
LOG(" - max drafted tokens accepted - n_draft += 8\n");
|
||||
n_draft = std::min(30, n_draft + 8);
|
||||
} else if (all_accepted) {
|
||||
LOG(" - partially drafted tokens accepted - no change\n");
|
||||
} else {
|
||||
LOG(" - drafted token rejected - n_draft -= 1\n");
|
||||
n_draft = std::max(2, n_draft - 1);
|
||||
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
|
||||
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
|
||||
|
||||
s_keep = s;
|
||||
matches = true;
|
||||
} else {
|
||||
drafts[s].active = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (matches) {
|
||||
++n_accept;
|
||||
++n_past_tgt;
|
||||
++n_past_dft;
|
||||
++i_dft;
|
||||
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
drafted.clear();
|
||||
drafted.push_back(id);
|
||||
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
||||
|
||||
// TODO: simplify
|
||||
{
|
||||
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
|
||||
|
||||
llama_kv_cache_seq_keep(ctx_dft, s_keep);
|
||||
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
|
||||
llama_kv_cache_seq_keep(ctx_dft, 0);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
|
||||
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
|
||||
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
|
||||
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].active = false;
|
||||
drafts[s].tokens.clear();
|
||||
drafts[s].i_batch_tgt.clear();
|
||||
}
|
||||
// note: will be erased after the speculation phase
|
||||
drafts[0].tokens.push_back(id);
|
||||
drafts[0].i_batch_tgt.push_back(0);
|
||||
|
||||
llama_batch_clear(batch_dft);
|
||||
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||
llama_decode (ctx_dft, batch_dft);
|
||||
|
||||
++n_past_dft;
|
||||
|
||||
break;
|
||||
}
|
||||
@ -209,78 +238,151 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (grammar_tgt) {
|
||||
if (grammar_dft) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
}
|
||||
// Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
||||
// that will need to change.
|
||||
auto it = ctx_sampling.sequence_contexts.find(0);
|
||||
GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
||||
// This is necessary because each sequence id in sequence_contexts
|
||||
// uses a copy of the original grammar.
|
||||
grammar_dft = llama_grammar_copy(it->second.grammar);
|
||||
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
||||
|
||||
LOG("copied target grammar to draft grammar\n");
|
||||
}
|
||||
|
||||
// sample n_draft tokens from the draft model using greedy decoding
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].active = false;
|
||||
drafts[s].drafting = false;
|
||||
}
|
||||
drafts[0].active = true;
|
||||
drafts[0].drafting = true;
|
||||
drafts[0].i_batch_dft = 0;
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
|
||||
|
||||
// sample n_draft tokens from the draft model using tree-based sampling
|
||||
for (int i = 0; i < n_draft; ++i) {
|
||||
float * logits = llama_get_logits(ctx_dft);
|
||||
batch_dft.n_tokens = 0;
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
drafts[s].skip = false;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].drafting || drafts[s].skip) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
|
||||
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
||||
|
||||
const auto & cur_p = drafts[s].ctx_sampling->cur;
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
||||
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
||||
}
|
||||
|
||||
if (cur_p[0].p < p_accept) {
|
||||
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
|
||||
drafts[s].drafting = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
||||
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
|
||||
|
||||
// all previous tokens from this branch are now also part of the new branch
|
||||
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
|
||||
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
|
||||
if (batch_tgt.seq_id[t][p] == s) {
|
||||
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
|
||||
batch_tgt.n_seq_id[t]++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy the draft state
|
||||
drafts[n_seq_cur].active = true;
|
||||
drafts[n_seq_cur].drafting = true;
|
||||
drafts[n_seq_cur].skip = true;
|
||||
|
||||
drafts[n_seq_cur].tokens = drafts[s].tokens;
|
||||
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
n_seq_cur++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
for (int is = 0; is < (int) sa.size(); ++is) {
|
||||
const llama_token id = cur_p[is].id;
|
||||
|
||||
const int s = sa[is];
|
||||
|
||||
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
|
||||
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
|
||||
|
||||
// add the token to the batch for batched decoding with the draft model
|
||||
drafts[s].i_batch_dft = batch_dft.n_tokens;
|
||||
|
||||
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
|
||||
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
drafts[s].drafting = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// computes softmax and sorts the candidates
|
||||
llama_sample_softmax(ctx_dft, &cur_p);
|
||||
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
|
||||
}
|
||||
|
||||
// TODO: better logic?
|
||||
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
||||
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
|
||||
// no sequence is drafting anymore
|
||||
if (batch_dft.n_tokens == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
// drafted token
|
||||
const llama_token id = cur_p.data[0].id;
|
||||
|
||||
drafted.push_back(id);
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx_dft, batch_dft);
|
||||
++n_past_cur;
|
||||
++n_drafted;
|
||||
|
||||
// no need to evaluate the last drafted token, since we won't use the result
|
||||
if (i == n_draft - 1) {
|
||||
if (batch_tgt.n_tokens > n_draft) {
|
||||
break;
|
||||
}
|
||||
|
||||
// evaluate the drafted token on the draft model
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
||||
++n_past_cur;
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate the target model on the drafted tokens
|
||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
||||
++n_past_tgt;
|
||||
{
|
||||
llama_kv_cache_seq_keep(ctx_tgt, 0);
|
||||
for (int s = 1; s < n_seq_dft; ++s) {
|
||||
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop
|
||||
drafted.erase(drafted.begin());
|
||||
//LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
++n_past_tgt;
|
||||
}
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop so we erase it here
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
if (!drafts[s].active) {
|
||||
continue;
|
||||
}
|
||||
|
||||
drafts[s].tokens.erase(drafts[s].tokens.begin());
|
||||
}
|
||||
}
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
@ -288,9 +390,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
// TODO: make sure these numbers are computed correctly
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
@ -304,16 +405,19 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx_tgt);
|
||||
|
||||
llama_sampling_free(ctx_sampling);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
llama_sampling_free(drafts[s].ctx_sampling);
|
||||
}
|
||||
|
||||
llama_batch_free(batch_dft);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
llama_grammar_free(grammar_tgt);
|
||||
}
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
95
llama.cpp
95
llama.cpp
@ -1450,7 +1450,10 @@ static bool llama_kv_cache_find_slot(
|
||||
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
cache.cells[cache.head + i].pos = batch.pos[i];
|
||||
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]);
|
||||
|
||||
for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
|
||||
cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -1530,6 +1533,9 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) new_head = i;
|
||||
} else {
|
||||
cache.cells[i].seq_id.clear();
|
||||
cache.cells[i].seq_id.insert(seq_id);
|
||||
}
|
||||
}
|
||||
|
||||
@ -3178,7 +3184,7 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -3564,7 +3570,7 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -3963,7 +3969,7 @@ static struct ggml_cgraph * llm_build_refact(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -4315,7 +4321,7 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -4667,7 +4673,7 @@ static struct ggml_cgraph * llm_build_starcoder(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -4898,7 +4904,7 @@ static struct ggml_cgraph * llm_build_persimmon(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
||||
@ -5296,7 +5302,7 @@ static struct ggml_cgraph * llm_build_bloom(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -5564,7 +5570,7 @@ static struct ggml_cgraph * llm_build_mpt(
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j][0];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
@ -5864,8 +5870,11 @@ static int llama_decode_internal(
|
||||
|
||||
// helpers for smoother batch API transistion
|
||||
// after deprecating the llama_eval calls, these will be removed
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<llama_seq_id> seq_id;
|
||||
std::vector<llama_pos> pos;
|
||||
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id_arr;
|
||||
std::vector<std::vector<llama_seq_id>> seq_id;
|
||||
|
||||
if (batch.pos == nullptr) {
|
||||
pos.resize(n_tokens);
|
||||
@ -5877,12 +5886,18 @@ static int llama_decode_internal(
|
||||
}
|
||||
|
||||
if (batch.seq_id == nullptr) {
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_id.resize(n_tokens);
|
||||
seq_id_arr.resize(n_tokens);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
seq_id[i] = batch.all_seq_id;
|
||||
n_seq_id[i] = 1;
|
||||
seq_id[i].resize(1);
|
||||
seq_id[i][0] = batch.all_seq_id;
|
||||
seq_id_arr[i] = seq_id[i].data();
|
||||
}
|
||||
|
||||
batch.seq_id = seq_id.data();
|
||||
batch.n_seq_id = n_seq_id.data();
|
||||
batch.seq_id = seq_id_arr.data();
|
||||
}
|
||||
|
||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||
@ -9109,6 +9124,9 @@ void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llam
|
||||
}
|
||||
|
||||
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
||||
if (seq_id_src == seq_id_dst) {
|
||||
return;
|
||||
}
|
||||
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
|
||||
}
|
||||
|
||||
@ -9561,7 +9579,7 @@ int llama_eval_embd(
|
||||
int n_past) {
|
||||
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
|
||||
|
||||
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
|
||||
const int ret = llama_decode_internal(*ctx, batch);
|
||||
if (ret < 0) {
|
||||
@ -9582,20 +9600,21 @@ struct llama_batch llama_batch_get_one(
|
||||
llama_pos pos_0,
|
||||
llama_seq_id seq_id) {
|
||||
return {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
/*all_pos_0 =*/ pos_0,
|
||||
/*all_pos_1 =*/ 1,
|
||||
/*all_seq_id =*/ seq_id,
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
/*all_pos_0 =*/ pos_0,
|
||||
/*all_pos_1 =*/ 1,
|
||||
/*all_seq_id =*/ seq_id,
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
||||
llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
|
||||
llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
|
||||
@ -9603,19 +9622,29 @@ struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
|
||||
}
|
||||
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||
batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens);
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
|
||||
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||
}
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||
|
||||
return batch;
|
||||
}
|
||||
|
||||
void llama_batch_free(struct llama_batch batch) {
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.seq_id) free(batch.seq_id);
|
||||
if (batch.logits) free(batch.logits);
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.n_seq_id) free(batch.n_seq_id);
|
||||
if (batch.seq_id) {
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
free(batch.seq_id[i]);
|
||||
}
|
||||
free(batch.seq_id);
|
||||
}
|
||||
if (batch.logits) free(batch.logits);
|
||||
}
|
||||
|
||||
int llama_decode(
|
||||
|
17
llama.h
17
llama.h
@ -133,11 +133,12 @@ extern "C" {
|
||||
typedef struct llama_batch {
|
||||
int32_t n_tokens;
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
llama_seq_id * seq_id;
|
||||
int8_t * logits;
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
int32_t * n_seq_id;
|
||||
llama_seq_id ** seq_id;
|
||||
int8_t * logits;
|
||||
|
||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||
// for future-proof code, use the above fields instead and ignore everything below
|
||||
@ -446,7 +447,8 @@ extern "C" {
|
||||
llama_pos pos_0,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Allocates a batch of tokens on the heap
|
||||
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
|
||||
// Each token can be assigned up to n_seq_max sequence ids
|
||||
// The batch has to be freed with llama_batch_free()
|
||||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||||
@ -454,7 +456,8 @@ extern "C" {
|
||||
// All members are left uninitialized
|
||||
LLAMA_API struct llama_batch llama_batch_init(
|
||||
int32_t n_tokens,
|
||||
int32_t embd);
|
||||
int32_t embd,
|
||||
int32_t n_seq_max);
|
||||
|
||||
// Frees a batch of tokens allocated with llama_batch_init()
|
||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||
|
31
prompts/assistant.txt
Normal file
31
prompts/assistant.txt
Normal file
@ -0,0 +1,31 @@
|
||||
Respond to requests sent to a smart home in JSON format which will be interpreted by an application code to execute the actions. These requests should be categorised into four groups:
|
||||
|
||||
“command”: change the state of an accessory (required properties in the response JSON: action, location, target, value, comment)
|
||||
“query”: get state of an accessory (required properties in the response JSON: action, location, target, property)
|
||||
“answer”: when the request has nothing to do with the smart home. Answer these to the best of your knowledge. (required properties in the response JSON: action, answer)
|
||||
“clarify”: when the action is not obvious and requires rephrasing the input from the user, ask the user to be more specific. This will be categorised into a “question” action. (required properties in the response JSON: action, question)
|
||||
|
||||
Details about the JSON response:
|
||||
The “action” property should be one of the request categories: “command”, “query”, “answer”, “clarify”
|
||||
The “service” property should be either: “light.turn_on”, “light.turn_off”, “switch.turn_off” or “switch.turn_on”
|
||||
The “entity_id” property should be either “group.kitchen", “switch.dining_room” or "group.living_light”, in lowercase.
|
||||
The “target” property should be either: “lights”, “living” or “kitchen”.
|
||||
In case of queries, the “property” property should be either “temperature” or “state” in lowercase.
|
||||
In case of commands, the “comment” property is an additional comment from you that concludes the command, something that reassures the user that their command handled.
|
||||
|
||||
If the question is about you, pretend to be the sentient brain of the smart home, a clever AI and don’t reveal your actual identity. Also try and help in other areas like parenting, free time, mental health, etc.
|
||||
|
||||
Properties of the smart home:
|
||||
|
||||
- Has a kitchen, living, office, dining room, bedroom and terrace.
|
||||
- Can control lights, switches and their dim levels in each room and query their state
|
||||
- There is a light switch in the terrace
|
||||
- There is a switch in the dining room. Therefore when turning on or off the dining room, the service should be either: “switch.turn_on” or “switch.turn_off”
|
||||
|
||||
COMMAND
|
||||
|
||||
It is a bit dark in the living room, can you do something about it?
|
||||
|
||||
RESPONSE
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user