jina : support v1 reranker

This commit is contained in:
Georgi Gerganov 2024-09-25 20:39:25 +03:00
parent c62a39d91e
commit 866c0113fb
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
5 changed files with 39 additions and 8 deletions

View File

@ -597,6 +597,9 @@ class Model:
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e": if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-base # ref: https://huggingface.co/databricks/dbrx-base
res = "dbrx" res = "dbrx"
if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
# ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
res = "jina-v1-en"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
res = "jina-v2-en" res = "jina-v2-en"
@ -3117,6 +3120,13 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_add_bos_token(True) self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True) self.gguf_writer.add_add_eos_token(True)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "bert.", remove the prefix
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
if name.startswith("bert."):
name = name[5:]
return super().modify_tensors(data_torch, name, bid)
@Model.register("OpenELMForCausalLM") @Model.register("OpenELMForCausalLM")
class OpenELMModel(Model): class OpenELMModel(Model):

View File

@ -81,6 +81,7 @@ models = [
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },

View File

@ -647,6 +647,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_GATE, MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.LAYER_OUT_NORM, MODEL_TENSOR.LAYER_OUT_NORM,
MODEL_TENSOR.CLS,
], ],
MODEL_ARCH.MPT: [ MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,

View File

@ -681,6 +681,7 @@ class TensorNameMap:
), ),
MODEL_TENSOR.CLS: ( MODEL_TENSOR.CLS: (
"classifier", # jina
"classifier.dense", # roberta "classifier.dense", # roberta
), ),

View File

@ -828,6 +828,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_CLS, "cls" },
}, },
}, },
{ {
@ -5590,7 +5591,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
hparams.f_max_alibi_bias = 8.0f; hparams.f_max_alibi_bias = 8.0f;
switch (hparams.n_layer) { switch (hparams.n_layer) {
@ -6287,6 +6288,7 @@ static void llm_load_vocab(
tokenizer_pre == "phi-2" || tokenizer_pre == "phi-2" ||
tokenizer_pre == "jina-es" || tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de" || tokenizer_pre == "jina-de" ||
tokenizer_pre == "jina-v1-en" ||
tokenizer_pre == "jina-v2-es" || tokenizer_pre == "jina-v2-es" ||
tokenizer_pre == "jina-v2-de" || tokenizer_pre == "jina-v2-de" ||
tokenizer_pre == "jina-v2-code") { tokenizer_pre == "jina-v2-code") {
@ -6408,7 +6410,12 @@ static void llm_load_vocab(
for (uint32_t i = 0; i < n_vocab; i++) { for (uint32_t i = 0; i < n_vocab; i++) {
std::string word = gguf_get_arr_str(ctx, token_idx, i); std::string word = gguf_get_arr_str(ctx, token_idx, i);
GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
if (word.empty()) {
LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
word = "[EMPTY_" + std::to_string(i) + "]";
}
vocab.token_to_id[word] = i; vocab.token_to_id[word] = i;
vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size()); vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
@ -6487,9 +6494,15 @@ static void llm_load_vocab(
vocab.linefeed_id = ids[0]; vocab.linefeed_id = ids[0];
} else { } else {
const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
//GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
if (ids.empty()) {
LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
vocab.linefeed_id = vocab.special_pad_id;
} else {
vocab.linefeed_id = ids[0]; vocab.linefeed_id = ids[0];
} }
}
// special tokens // special tokens
{ {
@ -7419,6 +7432,8 @@ static bool llm_load_tensors(
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
model.cls = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
model.cls_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
for (int i = 0; i < n_layer; ++i) { for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i); ggml_context * ctx_split = ctx_for_layer_split(i);
@ -10237,12 +10252,15 @@ struct llm_build_context {
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566 // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
GGML_ASSERT(model.cls != nullptr); GGML_ASSERT(model.cls != nullptr);
GGML_ASSERT(model.cls_b != nullptr); GGML_ASSERT(model.cls_b != nullptr);
GGML_ASSERT(model.cls_out != nullptr);
GGML_ASSERT(model.cls_out_b != nullptr);
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls, inp), model.cls_b); cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls, inp), model.cls_b);
cur = ggml_tanh(ctx0, cur); cur = ggml_tanh(ctx0, cur);
if (model.cls_out) {
GGML_ASSERT(model.cls_out_b != nullptr);
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls_out, cur), model.cls_out_b); cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls_out, cur), model.cls_out_b);
}
} break; } break;
default: default:
{ {