mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
perplexity : add Hellaswag calculation (#2389)
* common.h : add hellaswag / remove perplexity-lines * common.cpp : add hellaswag / remove perplexity-lines * perplexity.cpp : add hellswag scores / remove perplexity-lines * perplexity.cpp : clean up * common.h : change default param value * common.cpp : Change default param * perplexity.cpp : alter wording * common.h : alter wording * common.cpp : alter wording
This commit is contained in:
parent
a9559bf77b
commit
8a88e5855c
@ -402,8 +402,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
params.antiprompt.push_back(argv[i]);
|
params.antiprompt.push_back(argv[i]);
|
||||||
} else if (arg == "--perplexity") {
|
} else if (arg == "--perplexity") {
|
||||||
params.perplexity = true;
|
params.perplexity = true;
|
||||||
} else if (arg == "--perplexity-lines") {
|
} else if (arg == "--hellaswag") {
|
||||||
params.perplexity_lines = true;
|
params.hellaswag = true;
|
||||||
|
} else if (arg == "--hellaswag-tasks") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.hellaswag_tasks = std::stoi(argv[i]);
|
||||||
} else if (arg == "--ignore-eos") {
|
} else if (arg == "--ignore-eos") {
|
||||||
params.logit_bias[llama_token_eos()] = -INFINITY;
|
params.logit_bias[llama_token_eos()] = -INFINITY;
|
||||||
} else if (arg == "--no-penalize-nl") {
|
} else if (arg == "--no-penalize-nl") {
|
||||||
@ -559,8 +565,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||||
fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||||
fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n");
|
fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n");
|
||||||
fprintf(stdout, " --perplexity-lines compute perplexity over each line of the prompt\n");
|
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||||
fprintf(stdout, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %d)\n", params.hellaswag_tasks);
|
||||||
|
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||||
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
||||||
if (llama_mlock_supported()) {
|
if (llama_mlock_supported()) {
|
||||||
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||||
|
@ -70,7 +70,10 @@ struct gpt_params {
|
|||||||
std::string lora_adapter = ""; // lora adapter path
|
std::string lora_adapter = ""; // lora adapter path
|
||||||
std::string lora_base = ""; // base model path for the lora adapter
|
std::string lora_base = ""; // base model path for the lora adapter
|
||||||
|
|
||||||
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||||
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||||
|
|
||||||
|
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
||||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||||
bool random_prompt = false; // do not randomize prompt if none provided
|
bool random_prompt = false; // do not randomize prompt if none provided
|
||||||
bool use_color = false; // use color to distinguish generations and inputs
|
bool use_color = false; // use color to distinguish generations and inputs
|
||||||
@ -86,7 +89,6 @@ struct gpt_params {
|
|||||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||||
bool perplexity = false; // compute perplexity over the prompt
|
bool perplexity = false; // compute perplexity over the prompt
|
||||||
bool perplexity_lines = false; // compute perplexity over each line of the prompt
|
|
||||||
bool use_mmap = true; // use mmap for faster loads
|
bool use_mmap = true; // use mmap for faster loads
|
||||||
bool use_mlock = false; // use mlock to keep model in memory
|
bool use_mlock = false; // use mlock to keep model in memory
|
||||||
bool mem_test = false; // compute maximum memory usage
|
bool mem_test = false; // compute maximum memory usage
|
||||||
|
@ -121,8 +121,23 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
void perplexity_lines(llama_context * ctx, const gpt_params & params) {
|
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
// Calculates perplexity over each line of the prompt
|
// Calculates hellaswag score (acc_norm) from prompt
|
||||||
|
//
|
||||||
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||||
|
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
||||||
|
//
|
||||||
|
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
|
||||||
|
//
|
||||||
|
// Datafile layout:
|
||||||
|
// ['??'] denotes json fields
|
||||||
|
// 6 lines per task:
|
||||||
|
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
||||||
|
// ['label'] - The index the best common sense ending aka gold ending
|
||||||
|
// ['endings'][0] - Endings added to the first part of the query
|
||||||
|
// ['endings'][1]
|
||||||
|
// ['endings'][2]
|
||||||
|
// ['endings'][3]
|
||||||
|
|
||||||
std::vector<std::string> prompt_lines;
|
std::vector<std::string> prompt_lines;
|
||||||
std::istringstream strstream(params.prompt);
|
std::istringstream strstream(params.prompt);
|
||||||
@ -132,63 +147,149 @@ void perplexity_lines(llama_context * ctx, const gpt_params & params) {
|
|||||||
prompt_lines.push_back(line);
|
prompt_lines.push_back(line);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if( prompt_lines.size() % 6 != 0) {
|
||||||
|
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t hs_task_count = prompt_lines.size()/6;
|
||||||
|
fprintf(stderr, "%s : loaded %lu tasks from prompt.\n", __func__, hs_task_count);
|
||||||
|
|
||||||
|
// This is needed as usual for LLaMA models
|
||||||
|
bool prepend_bos = true;
|
||||||
|
|
||||||
|
// Number of tasks to use when computing the score
|
||||||
|
if ( params.hellaswag_tasks < hs_task_count ) {
|
||||||
|
hs_task_count = params.hellaswag_tasks;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The tasks should be randomized so the score stabilizes quickly.
|
||||||
|
bool randomize_tasks = true;
|
||||||
|
|
||||||
|
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
||||||
|
std::mt19937 rng(1);
|
||||||
|
|
||||||
|
// Dataholder for hellaswag tasks
|
||||||
|
struct hs_data_t {
|
||||||
|
std::string context;
|
||||||
|
size_t gold_ending_idx;
|
||||||
|
std::string ending[4];
|
||||||
|
size_t ending_logprob_count[4];
|
||||||
|
double ending_logprob[4];
|
||||||
|
};
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : selecting %lu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||||
|
|
||||||
|
// Select and read data from prompt lines
|
||||||
|
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
||||||
|
for (size_t i=0; i < hs_task_count; i++) {
|
||||||
|
size_t idx = i;
|
||||||
|
|
||||||
|
// Select a random example of those left in the prompt
|
||||||
|
if (randomize_tasks) {
|
||||||
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
||||||
|
idx = dist(rng);
|
||||||
|
}
|
||||||
|
|
||||||
|
hs_data[i].context = prompt_lines[idx*6];
|
||||||
|
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||||
|
for (size_t j=0; j < 4; j++) {
|
||||||
|
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Delete the selected random example from the prompt
|
||||||
|
if (randomize_tasks) {
|
||||||
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
||||||
|
printf("\ntask\tacc_norm\n");
|
||||||
|
|
||||||
|
double acc = 0.0f;
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(ctx);
|
||||||
|
|
||||||
int counttotal = 0;
|
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
||||||
size_t n_lines = prompt_lines.size();
|
|
||||||
|
|
||||||
double nll = 0.0;
|
// Tokenize the context to count tokens
|
||||||
|
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
|
||||||
|
size_t context_size = context_embd.size();
|
||||||
|
|
||||||
fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);
|
for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
|
||||||
|
|
||||||
printf("\nLine\tPPL line\tPPL cumulative\n");
|
// Tokenize the query
|
||||||
|
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
|
||||||
|
size_t query_size = query_embd.size();
|
||||||
|
|
||||||
for (size_t i = 0; i < n_lines; ++i) {
|
// Stop if query wont fit the ctx window
|
||||||
|
if (query_size > (size_t)params.n_ctx) {
|
||||||
|
fprintf(stderr, "%s : number of tokens in query %lu > n_ctxl\n", __func__, query_size);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
// Tokenize and insert BOS at start
|
// Speedup small evaluations by evaluating atleast 32 tokens
|
||||||
std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);
|
if (query_size < 32) {
|
||||||
|
query_embd.resize(32);
|
||||||
|
}
|
||||||
|
|
||||||
size_t batch_size = batch_embd.size();
|
// Evaluate the query
|
||||||
|
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
|
||||||
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
// Stop if line is too long
|
const auto query_logits = llama_get_logits(ctx);
|
||||||
if( batch_size > (size_t)params.n_ctx ) {
|
std::vector<float> logits;
|
||||||
fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
|
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
|
||||||
return;
|
|
||||||
|
hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
|
||||||
|
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
|
||||||
|
|
||||||
|
// Calculate the logprobs over the ending
|
||||||
|
for (size_t j = context_size-1; j < query_size - 1; j++) {
|
||||||
|
// Calculate probability of next token, given the previous ones.
|
||||||
|
const std::vector<float> tok_logits(
|
||||||
|
logits.begin() + (j + 0) * n_vocab,
|
||||||
|
logits.begin() + (j + 1) * n_vocab);
|
||||||
|
|
||||||
|
const float prob = softmax(tok_logits)[query_embd[ j + 1]];
|
||||||
|
|
||||||
|
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
|
||||||
|
hs_data[task_idx].ending_logprob_count[ending_idx]++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate the mean token logprob for acc_norm
|
||||||
|
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
|
||||||
|
|
||||||
|
|
||||||
|
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
|
||||||
|
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
|
// Find the ending with maximum logprob
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
size_t ending_logprob_max_idx = -1;
|
||||||
return;
|
double ending_logprob_max_val = -INFINITY;
|
||||||
|
for (size_t j=0; j < 4; j++) {
|
||||||
|
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
|
||||||
|
ending_logprob_max_idx = j;
|
||||||
|
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto batch_logits = llama_get_logits(ctx);
|
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
|
||||||
std::vector<float> logits;
|
|
||||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
||||||
|
|
||||||
double nllline = 0.0;
|
// If the gold ending got the maximum logprobe add one accuracy point
|
||||||
int countline = 0;
|
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
|
||||||
|
acc += 1.0;
|
||||||
// Perplexity over second half of the line
|
|
||||||
for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
|
|
||||||
// Calculate probability of next token, given the previous ones.
|
|
||||||
const std::vector<float> tok_logits(
|
|
||||||
logits.begin() + (j + 0) * n_vocab,
|
|
||||||
logits.begin() + (j + 1) * n_vocab);
|
|
||||||
|
|
||||||
const float prob = softmax(tok_logits)[batch_embd[ j + 1]];
|
|
||||||
|
|
||||||
nllline += -std::log(prob);
|
|
||||||
++countline;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
nll += nllline;
|
// Print the accumulated accuracy mean x 100
|
||||||
counttotal += countline;
|
printf("%li\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
||||||
|
|
||||||
// perplexity is e^(average negative log-likelihood)
|
|
||||||
printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
|
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
delete [] hs_data;
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -240,8 +341,8 @@ int main(int argc, char ** argv) {
|
|||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.perplexity_lines) {
|
if (params.hellaswag) {
|
||||||
perplexity_lines(ctx, params);
|
hellaswag_score(ctx, params);
|
||||||
} else {
|
} else {
|
||||||
perplexity(ctx, params);
|
perplexity(ctx, params);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user