perplexity : faster Winogrande via batching (#5024)

* perplexity : faster Winogrande via batching

ggml-ci

* perplexity : remove unused function

* perplexity : only tokenize selected tasks for Winogrande
This commit is contained in:
Georgi Gerganov 2024-01-19 10:45:06 +02:00 committed by GitHub
parent 57e2a7a52a
commit 8b20858e5e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -423,26 +423,31 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
return {tokens, ppl, logit_history, prob_history}; return {tokens, ppl, logit_history, prob_history};
} }
static std::vector<float> evaluate_tokens(llama_context * ctx, std::vector<int> & tokens, static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
int n_past, int n_batch, int n_vocab) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
std::vector<float> result; const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
result.reserve(tokens.size() * n_vocab);
size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch; llama_batch batch_view = {
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { n_tokens,
size_t n_tokens = tokens.size() - i_chunk * n_batch; batch.token + i,
n_tokens = std::min(n_tokens, size_t(n_batch)); nullptr,
llama_kv_cache_seq_rm(ctx, 0, n_past, -1); batch.pos + i,
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) { batch.n_seq_id + i,
fprintf(stderr, "%s : failed to eval\n", __func__); batch.seq_id + i,
return {}; batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
} }
const auto logits = llama_get_logits(ctx); memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
result.insert(result.end(), logits, logits + n_tokens * n_vocab);
n_past += n_tokens;
} }
return result;
return true;
} }
static void hellaswag_compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers, static void hellaswag_compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
@ -576,7 +581,6 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// determine the common prefix of the endings // determine the common prefix of the endings
hs_cur.common_prefix = 0; hs_cur.common_prefix = 0;
hs_cur.required_tokens = 0;
for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
@ -609,45 +613,18 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch; const int n_batch = params.n_batch;
const int max_tasks_per_batch = params.n_parallel; const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch; const int max_seq = 4*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
std::vector<float> tok_logits(n_vocab); std::vector<float> tok_logits(n_vocab);
std::vector<float> batch_logits(n_ctx*n_vocab); std::vector<float> batch_logits(n_vocab*n_ctx);
std::vector<std::pair<size_t, llama_token>> eval_pairs; std::vector<std::pair<size_t, llama_token>> eval_pairs;
std::vector<float> eval_results; std::vector<float> eval_results;
std::vector<std::thread> workers(std::thread::hardware_concurrency()); std::vector<std::thread> workers(std::thread::hardware_concurrency());
auto decode_helper = [&](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
}
return true;
};
for (size_t i0 = 0; i0 < hs_task_count; i0++) { for (size_t i0 = 0; i0 < hs_task_count; i0++) {
int n_cur = 0; int n_cur = 0;
@ -696,7 +673,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
llama_kv_cache_clear(ctx); llama_kv_cache_clear(ctx);
// decode all tasks [i0, i1) // decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, n_batch)) { if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
fprintf(stderr, "%s: llama_decode() failed\n", __func__); fprintf(stderr, "%s: llama_decode() failed\n", __func__);
return; return;
} }
@ -772,6 +749,13 @@ struct winogrande_entry {
std::string second; std::string second;
std::array<std::string, 2> choices; std::array<std::string, 2> choices;
int answer; int answer;
size_t i_batch;
size_t common_prefix;
size_t required_tokens;
size_t n_base1; // number of tokens for context + choice 1
size_t n_base2; // number of tokens for context + choice 2
std::vector<llama_token> seq_tokens[2];
}; };
static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) { static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
@ -875,115 +859,164 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
data = std::move(selected); data = std::move(selected);
} }
fprintf(stderr, "%s : tokenizing selected tasks\n", __func__);
// This is needed as usual for LLaMA models // This is needed as usual for LLaMA models
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
for (auto & task : data) {
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, add_bos);
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, add_bos);
task.common_prefix = 0;
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
break;
}
task.common_prefix++;
}
task.required_tokens = task.common_prefix +
task.seq_tokens[0].size() - task.common_prefix +
task.seq_tokens[1].size() - task.common_prefix;
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos).size();
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos).size();
}
fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__); fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 128;
const int max_seq = 2*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
std::vector<float> tok_logits(n_vocab); std::vector<float> tok_logits(n_vocab);
std::vector<float> batch_logits(n_vocab*n_ctx);
int n_correct = 0; int n_correct = 0;
int n_done = 0; int n_done = 0;
for (size_t task_idx = 0; task_idx < data.size(); task_idx++) { for (size_t i0 = 0; i0 < data.size(); i0++) {
const auto& task = data[task_idx]; int n_cur = 0;
auto base_context = ::llama_tokenize(ctx, task.first, add_bos); size_t i1 = i0;
auto base_ctx_1st = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos); size_t i_batch = 0;
auto base_ctx_2nd = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos);
auto sentence_1st = task.first + task.choices[0] + task.second; llama_batch_clear(batch);
auto sentence_2nd = task.first + task.choices[1] + task.second;
auto query_1st = ::llama_tokenize(ctx, sentence_1st, add_bos);
auto query_2nd = ::llama_tokenize(ctx, sentence_2nd, add_bos);
if (query_1st.size() > (size_t)n_ctx || query_2nd.size() > (size_t)n_ctx) { while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
fprintf(stderr, "%s : number of tokens in queries %zu, %zu > n_ctxl\n", __func__, query_1st.size(), query_2nd.size()); const int s0 = 2*(i1 - i0);
if (s0 + 2 > max_seq) {
break;
}
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false);
}
batch.logits[batch.n_tokens - 1] = true;
for (int s = 0; s < 2; ++s) {
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
}
}
data[i1].i_batch = i_batch;
i_batch += data[i1].required_tokens;
n_cur += data[i1].required_tokens;
if (++i1 == data.size()) {
break;
}
}
if (i0 == i1) {
fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0);
return; return;
} }
auto query_1st_size = query_1st.size();
auto query_2nd_size = query_2nd.size();
// Speedup small evaluations by evaluating atleast 32 tokens
// For Winogrande this seems to slow it down rather than speed it up.
//if (query_1st.size() < 32) query_1st.resize(32);
//if (query_2nd.size() < 32) query_2nd.resize(32);
llama_kv_cache_clear(ctx); llama_kv_cache_clear(ctx);
auto logits_1st = evaluate_tokens(ctx, query_1st, 0, params.n_batch, n_vocab);
llama_kv_cache_clear(ctx); // decode all tasks [i0, i1)
auto logits_2nd = evaluate_tokens(ctx, query_2nd, 0, params.n_batch, n_vocab); if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
fprintf(stderr, "%s: llama_decode() failed\n", __func__);
if (logits_1st.empty() || logits_2nd.empty()) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return; return;
} }
bool skip_choice = query_1st_size - base_ctx_1st.size() > k_min_trailing_ctx && for (size_t i = i0; i < i1; ++i) {
query_2nd_size - base_ctx_2nd.size() > k_min_trailing_ctx; auto & task = data[i];
float score_1st = 0; const bool skip_choice =
bool is_nan_1st = false; task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
const auto& base_1 = skip_choice ? base_ctx_1st : base_context; task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
const int last_1st = query_1st_size - base_1.size() > 1 ? 1 : 0;
for (size_t j = base_1.size()-1; j < query_1st_size-1-last_1st; ++j) { float score_1st = 0;
std::memcpy(tok_logits.data(), logits_1st.data() + j*n_vocab, n_vocab*sizeof(float)); bool is_nan_1st = false;
const float prob = softmax(tok_logits)[query_1st[j+1]]; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
if (std::isnan(prob) || !prob) { const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__, size_t li = n_base1 - 1;
prob, j, sentence_1st.c_str(), base_context.size()); for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
is_nan_1st = true; std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(task.i_batch + li++), n_vocab*sizeof(float));
break; const float prob = softmax(tok_logits)[task.seq_tokens[0][j+1]];
if (std::isnan(prob) || !prob) {
fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
prob, j, (task.first + task.choices[0] + task.second).c_str(), n_base1);
is_nan_1st = true;
break;
}
score_1st += std::log(prob);
} }
score_1st += std::log(prob); score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
}
score_1st /= (query_1st_size - base_1.size() - last_1st);
float score_2nd = 0; float score_2nd = 0;
bool is_nan_2nd = false; bool is_nan_2nd = false;
const auto& base_2 = skip_choice ? base_ctx_2nd : base_context; const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
const int last_2nd = query_2nd_size - base_2.size() > 1 ? 1 : 0; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
for (size_t j = base_2.size()-1; j < query_2nd_size-1-last_2nd; ++j) { li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
std::memcpy(tok_logits.data(), logits_2nd.data() + j*n_vocab, n_vocab*sizeof(float)); for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
const float prob = softmax(tok_logits)[query_2nd[j+1]]; std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(task.i_batch + li++), n_vocab*sizeof(float));
if (std::isnan(prob) || !prob) { const float prob = softmax(tok_logits)[task.seq_tokens[1][j+1]];
fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__, if (std::isnan(prob) || !prob) {
prob, j, sentence_2nd.c_str(), base_context.size()); fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
is_nan_2nd = true; prob, j, (task.first + task.choices[1] + task.second).c_str(), n_base2);
break; is_nan_2nd = true;
break;
}
score_2nd += std::log(prob);
} }
score_2nd += std::log(prob); score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
}
score_2nd /= (query_2nd_size - base_2.size() - last_2nd);
if (is_nan_1st || is_nan_2nd) { if (is_nan_1st || is_nan_2nd) {
continue; continue;
}
if (std::isnan(score_1st) || std::isnan(score_2nd)) {
printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd);
printf("Q1: <%s> - %zu tokens\n", (task.first + task.choices[0] + task.second).c_str(), task.seq_tokens[0].size());
printf("Q2: <%s> - %zu tokens\n", (task.first + task.choices[1] + task.second).c_str(), task.seq_tokens[1].size());
printf("B : <%s> - %zu tokens\n", task.first.c_str(), task.common_prefix);
printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", n_base1, n_base2, skip_choice);
continue;
}
int result = score_1st > score_2nd ? 1 : 2;
if (result == task.answer) {
++n_correct;
}
++n_done;
// Print the accumulated accuracy mean x 100
printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
fflush(stdout);
} }
if (std::isnan(score_1st) || std::isnan(score_2nd)) { i0 = i1 - 1;
printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd);
printf("Q1: <%s> - %zu tokens\n", sentence_1st.c_str(), query_1st_size);
printf("Q2: <%s> - %zu tokens\n", sentence_2nd.c_str(), query_2nd_size);
printf("B : <%s> - %zu tokens\n", task.first.c_str(), base_context.size());
printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", base_1.size(), base_2.size(), skip_choice);
continue;
}
int result = score_1st > score_2nd ? 1 : 2;
if (result == task.answer) {
++n_correct;
}
++n_done;
// Print the accumulated accuracy mean x 100
printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n",task_idx+1, 100.0 * n_correct/n_done,score_1st,score_2nd,result,task.answer);
fflush(stdout);
} }
printf("\n"); printf("\n");