mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
add input embeddings handling
This commit is contained in:
parent
ab13d071e1
commit
8bc76a225d
329
llama.cpp
329
llama.cpp
@ -3424,6 +3424,331 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
return gf;
|
||||
}
|
||||
|
||||
static struct ggml_cgraph * llm_build_starcoder(
|
||||
llama_context & lctx,
|
||||
const llama_token * tokens,
|
||||
const float * embd,
|
||||
int n_tokens,
|
||||
int n_past) {
|
||||
|
||||
GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
|
||||
|
||||
const int N = n_tokens;
|
||||
|
||||
const auto & model = lctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & kv_self = lctx.kv_self;
|
||||
|
||||
GGML_ASSERT(!!kv_self.ctx);
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_ctx = hparams.n_ctx;
|
||||
const int64_t n_head = hparams.n_head;
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_embd_head = hparams.n_embd_head();
|
||||
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
const float freq_base = hparams.rope_freq_base;
|
||||
const float freq_scale = hparams.rope_freq_scale;
|
||||
const float norm_eps = hparams.f_norm_eps;
|
||||
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_compute.size,
|
||||
/*.mem_buffer =*/ buf_compute.data,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
params.no_alloc = true;
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * token;
|
||||
struct ggml_tensor * position;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
if (tokens) {
|
||||
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
|
||||
ggml_allocr_alloc(lctx.alloc, inp_tokens);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||
}
|
||||
ggml_set_name(inp_tokens, "inp_tokens");
|
||||
|
||||
token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
||||
} else {
|
||||
#ifdef GGML_USE_MPI
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
#endif
|
||||
|
||||
token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
||||
|
||||
ggml_allocr_alloc(lctx.alloc, token);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// Compute position embeddings.
|
||||
struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
ggml_allocr_alloc(lctx.alloc, inp_positions);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
((int32_t *) inp_positions->data)[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
ggml_set_name(inp_positions, "inp_positions");
|
||||
|
||||
position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
|
||||
}
|
||||
|
||||
inpL = ggml_add(ctx0, token, position);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
(void) i_gpu_start;
|
||||
|
||||
// offload functions set the tensor output backend to GPU
|
||||
// tensors are GPU-accelerated if any input or the output has been offloaded
|
||||
//
|
||||
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
|
||||
// in that case ggml_cuda_assign_buffers has no effect
|
||||
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
|
||||
offload_func_t offload_func_kq = llama_nop;
|
||||
offload_func_t offload_func_v = llama_nop;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (n_gpu_layers > n_layer) {
|
||||
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 1) {
|
||||
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 2) {
|
||||
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
}
|
||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * attn_norm;
|
||||
|
||||
offload_func_t offload_func = llama_nop;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (il >= i_gpu_start) {
|
||||
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
// self-attention
|
||||
// TODO: refactor into common function (shared with LLaMA)
|
||||
{
|
||||
attn_norm = ggml_norm(ctx0, inpL, norm_eps);
|
||||
offload_func(attn_norm);
|
||||
|
||||
attn_norm = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
|
||||
model.layers[il].attn_norm_b);
|
||||
offload_func(attn_norm->src[0]);
|
||||
offload_func(attn_norm);
|
||||
|
||||
if (model.layers[il].attn_norm_2) { // Falcon-40B
|
||||
cur = ggml_norm(ctx0, inpL, norm_eps);
|
||||
offload_func(cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
|
||||
model.layers[il].attn_norm_2_b);
|
||||
offload_func(cur->src[0]);
|
||||
offload_func(cur);
|
||||
} else { // Falcon 7B
|
||||
cur = attn_norm;
|
||||
}
|
||||
|
||||
// compute QKV
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||
offload_func_kq(cur);
|
||||
|
||||
// Note that the strides for Kcur, Vcur are set up so that the
|
||||
// resulting views are misaligned with the tensor's storage
|
||||
// (by applying the K/V offset we shift the tensor's original
|
||||
// view to stick out behind the viewed QKV tensor's allocated
|
||||
// memory, so to say). This is ok because no actual accesses
|
||||
// happen to that out-of-range memory, but it can require some
|
||||
// trickery when trying to accurately dump these views for
|
||||
// debugging.
|
||||
|
||||
const size_t wsize = ggml_type_size(cur->type);
|
||||
|
||||
// TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
|
||||
// non-contiguous views is added for the rope operator
|
||||
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
|
||||
ctx0, cur, n_embd_head, n_head, N,
|
||||
wsize * n_embd_head,
|
||||
wsize * n_embd_head * (n_head + 2 * n_head_kv),
|
||||
0));
|
||||
offload_func_kq(tmpq);
|
||||
|
||||
struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
|
||||
ctx0, cur, n_embd_head, n_head_kv, N,
|
||||
wsize * n_embd_head,
|
||||
wsize * n_embd_head * (n_head + 2 * n_head_kv),
|
||||
wsize * n_embd_head * n_head));
|
||||
offload_func_kq(tmpk);
|
||||
|
||||
struct ggml_tensor * tmpv = ggml_view_3d(
|
||||
ctx0, cur, n_embd_head, n_head_kv, N,
|
||||
wsize * n_embd_head,
|
||||
wsize * n_embd_head * (n_head + 2 * n_head_kv),
|
||||
wsize * n_embd_head * (n_head + n_head_kv));
|
||||
offload_func_v(tmpv);
|
||||
|
||||
// using mode = 2 for neox mode
|
||||
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, tmpq, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
|
||||
offload_func_kq(Qcur);
|
||||
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, tmpk, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
|
||||
offload_func_kq(Kcur);
|
||||
|
||||
{
|
||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
|
||||
offload_func_v(Vcur);
|
||||
offload_func_v(Vcur->src[0]->src[0]);
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
|
||||
offload_func_kq(k);
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
|
||||
offload_func_v(v);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
offload_func_kq(Q);
|
||||
ggml_set_name(Q, "Q");
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_past + N, n_head_kv,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||
offload_func_kq(K);
|
||||
ggml_set_name(K, "K");
|
||||
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
offload_func_kq(KQ);
|
||||
ggml_set_name(KQ, "KQ");
|
||||
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
||||
offload_func_kq(KQ_scaled);
|
||||
ggml_set_name(KQ_scaled, "KQ_scaled");
|
||||
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
|
||||
offload_func_kq(KQ_masked);
|
||||
ggml_set_name(KQ_masked, "KQ_masked");
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
||||
offload_func_v(KQ_soft_max);
|
||||
ggml_set_name(KQ_soft_max, "KQ_soft_max");
|
||||
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_self.v,
|
||||
n_past + N, n_embd_head, n_head_kv,
|
||||
ggml_element_size(kv_self.v)*n_ctx,
|
||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
|
||||
offload_func_v(V);
|
||||
ggml_set_name(V, "V");
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
||||
offload_func_v(KQV);
|
||||
ggml_set_name(KQV, "KQV");
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
offload_func_v(KQV_merged);
|
||||
ggml_set_name(KQV_merged, "KQV_merged");
|
||||
|
||||
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
offload_func_v(cur);
|
||||
ggml_set_name(cur, "KQV_merged_contiguous");
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
|
||||
offload_func(cur);
|
||||
ggml_set_name(cur, "result_wo");
|
||||
}
|
||||
|
||||
struct ggml_tensor * attn_out = cur;
|
||||
|
||||
// feed forward
|
||||
{
|
||||
struct ggml_tensor * inpFF = attn_norm;
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
|
||||
offload_func(cur);
|
||||
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
offload_func(cur);
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
|
||||
offload_func(cur);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, attn_out);
|
||||
offload_func(cur);
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
offload_func(cur);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, cur, norm_eps);
|
||||
offload_func_nr(cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, cur, model.output_norm),
|
||||
model.output_norm_b);
|
||||
ggml_set_name(cur, "result_norm");
|
||||
}
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
ggml_set_name(cur, "result_output");
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
static struct ggml_cgraph * llama_build_graph(
|
||||
llama_context & lctx,
|
||||
const llama_token * tokens,
|
||||
@ -3447,6 +3772,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER:
|
||||
{
|
||||
result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user