stablelm : simplify + speedup generation (#4153)

This commit is contained in:
Galunid 2023-11-21 16:22:30 +01:00 committed by GitHub
parent 0b871f1a04
commit 8e672efe63
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -4814,92 +4814,34 @@ struct llm_build_context {
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(tmpq, "tmpq", il);
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(tmpk, "tmpk", il);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
// RoPE the first n_rot of q/k, pass the other half, and concat.
struct ggml_tensor * qrot = ggml_cont(ctx0, ggml_view_3d(
ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
ggml_element_size(tmpq) * n_embd_head,
ggml_element_size(tmpq) * n_embd_head * n_head,
0
));
cb(qrot, "qrot", il);
struct ggml_tensor * krot = ggml_cont(ctx0, ggml_view_3d(
ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
ggml_element_size(tmpk) * n_embd_head,
ggml_element_size(tmpk) * n_embd_head * n_head_kv,
0
));
cb(krot, "krot", il);
// get the second half of tmpq, e.g tmpq[n_rot:, :, :]
struct ggml_tensor * qpass = ggml_view_3d(
ctx0, tmpq, (n_embd_head - hparams.n_rot), n_head, n_tokens,
ggml_element_size(tmpq) * n_embd_head,
ggml_element_size(tmpq) * n_embd_head * n_head,
ggml_element_size(tmpq) * hparams.n_rot
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(qpass, "qpass", il);
struct ggml_tensor * kpass = ggml_view_3d(
ctx0, tmpk, (n_embd_head - hparams.n_rot), n_head_kv, n_tokens,
ggml_element_size(tmpk) * (n_embd_head),
ggml_element_size(tmpk) * (n_embd_head) * n_head_kv,
ggml_element_size(tmpk) * hparams.n_rot
);
cb(kpass, "kpass", il);
struct ggml_tensor * qrotated = ggml_rope_custom(
ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(qrotated, "qrotated", il);
struct ggml_tensor * krotated = ggml_rope_custom(
ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
);
cb(krotated, "krotated", il);
// ggml currently only supports concatenation on dim=2
// so we need to permute qrot, qpass, concat, then permute back.
qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
cb(qrotated, "qrotated", il);
krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
cb(krotated, "krotated", il);
qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
cb(qpass, "qpass", il);
kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
cb(kpass, "kpass", il);
struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
cb(Q, "Q", il);
Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
model.layers[il].wo, NULL,
Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}