ggml : add ALiBi support for ggml_soft_max_ext (#5488)

* ggml : avoid recomputing alibi slopes (CPU)

* llama : reuse hparams.f_max_alibi_bias in all cases

ggml-ci

* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)

ggml-ci

* ggml : handle all SRCs (do not break on first null)

ggml-ci

* tests : do not use slope for large soft_max

accumulates too much error

ggml-ci

* ggml : alternative ALiBi without extra tensor

We compute the slopes in the kernel

ggml-ci

* cuda : add ALiBi support in ggml_soft_max_ext

ggml-ci

* ggml : deprecate ggml_alibi

* ggml : support multi-sequence ALiBi (Metal)

ggml-ci

* cuda : add multi-seq ALiBi + remote F16 soft_max

ggml-ci

* ggml : update deprecation message

* ggml : fix pos ptr when no ALiBi

ggml-ci

* cuda : fix performance (pow -> powf)

* cuda : precompute ALiBi constants

* metal : pre-compute ALiBi slopes

ggml-ci

* llama : init kq_pos only if needed

ggml-ci

* test-backend-ops : add null pos test to soft_max

test-backend-ops : replace soft_max tests

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Georgi Gerganov 2024-02-17 23:04:16 +02:00 committed by GitHub
parent 6e4e973b26
commit 8f1be0d42f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 348 additions and 357 deletions

View File

@ -551,7 +551,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
} }
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
if (graph->nodes[i]->src[j] == NULL) { if (graph->nodes[i]->src[j] == NULL) {
break; continue;
} }
if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) { if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i)); ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i));
@ -787,7 +787,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
#ifndef NDEBUG #ifndef NDEBUG
@ -833,7 +833,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]); ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]);
} }

View File

@ -1041,7 +1041,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
for (int i = 0; i < GGML_MAX_SRC; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i]; const struct ggml_tensor * src = tensor->src[i];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer); int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
@ -1088,7 +1088,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
ggml_backend_t src_backend = tensor_backend(src); ggml_backend_t src_backend = tensor_backend(src);
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
@ -1144,7 +1144,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
if (tensor_backend_id(src) == -1) { if (tensor_backend_id(src) == -1) {
tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src); tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
@ -1256,7 +1256,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
int src_backend_id = tensor_backend_id(src); int src_backend_id = tensor_backend_id(src);
if (src_backend_id == -1) { if (src_backend_id == -1) {
@ -1315,7 +1315,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
int src_backend_id = tensor_backend_id(src); int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now assert(src_backend_id != -1); // all inputs should be assigned by now
@ -1362,7 +1362,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j]; struct ggml_tensor * src = node->src[j];
if (src == NULL) { if (src == NULL) {
break; continue;
} }
ggml_backend_t src_backend = tensor_backend(src); ggml_backend_t src_backend = tensor_backend(src);
if (src_backend != tensor_backend /* && src_backend != NULL */) { if (src_backend != tensor_backend /* && src_backend != NULL */) {
@ -1668,7 +1668,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
for (int i = 0; i < GGML_MAX_SRC; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * s = src->src[i]; struct ggml_tensor * s = src->src[i];
if (s == NULL) { if (s == NULL) {
break; continue;
} }
dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
} }
@ -1697,7 +1697,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
for (int i = 0; i < GGML_MAX_SRC; i++) { for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * s = src->src[i]; struct ggml_tensor * s = src->src[i];
if (s == NULL) { if (s == NULL) {
break; continue;
} }
graph_copy_init_tensor(hash_set, node_copies, node_init, s); graph_copy_init_tensor(hash_set, node_copies, node_init, s);
} }

View File

@ -5956,149 +5956,31 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
} }
template <bool vals_smem, int ncols_template, int block_size_template, bool need_check>
static __global__ void soft_max_f16(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template;
const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
extern __shared__ half data_soft_max_f16[];
half * buf_iw = data_soft_max_f16 + 0; // shared memory buffer for inter-warp communication
// (shared memory) buffer to cache values between iterations:
half2 * vals = vals_smem ? (half2 *) (buf_iw + WARP_SIZE) : (half2 *) (dst + rowx*ncols_data);
// if the buffer is larger than max. shared memory per block, use dst as temp. buffer instead
// in that case col_smem == col_data must be enforced to avoid race conditions
half2 max_val = make_half2(-INFINITY, -INFINITY);
#pragma unroll
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
const int col_smem = vals_smem ? col0 + tid : col_data;
const int ix = rowx*ncols_data + col_data;
const int iy = rowy*ncols_data + col_data;
half2 val;
if (need_check && col_data + 0 >= ncols_data) {
val.x = -INFINITY;
} else {
val.x = x[ix + 0]*scale + (y ? y[iy + 0] : 0.0f);
}
if (need_check && col_data + WARP_SIZE >= ncols_data) {
val.y = -INFINITY;
} else {
val.y = x[ix + WARP_SIZE]*scale + (y ? y[iy + WARP_SIZE] : 0.0f);
}
if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) {
vals[col_smem] = val;
}
max_val = __hmax2(max_val, val);
}
// find the max value in the block
max_val = warp_reduce_max(max_val);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf_iw[lane_id] = -INFINITY;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = __hmax(max_val.x, max_val.y);
}
__syncthreads();
max_val = __half2half2(buf_iw[lane_id]);
max_val = warp_reduce_max(max_val);
} else {
max_val = __half2half2(__hmax(max_val.x, max_val.y));
}
half2 tmp = make_half2(0.0f, 0.0f); // partial sums
#pragma unroll
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int col_smem = vals_smem ? col0 + tid : 2*col0 + 2*warp_id*WARP_SIZE + lane_id;
if (ncols_template == 0 && col_smem >= (vals_smem ? ncols_smem : ncols_data)) {
break;
}
const half2 val = h2exp(vals[col_smem] - max_val);
tmp += val;
vals[col_smem] = val;
}
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf_iw[lane_id] = 0.0f;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = tmp.x + tmp.y;
}
__syncthreads();
tmp = __half2half2(buf_iw[lane_id]);
tmp = warp_reduce_sum(tmp);
} else {
tmp = __half2half2(tmp.x + tmp.y);
}
const half2 inv_sum = make_half2(1.0f, 1.0f) / tmp;
#pragma unroll
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
const int col_smem = vals_smem ? col0 + tid : col_data;
const int idst = rowx*ncols_data + col_data;
const half2 result = vals[col_smem] * inv_sum;
if (need_check && col_data + 0 >= ncols_data) {
return;
}
dst[idst] = result.x;
if (need_check && col_data + WARP_SIZE >= ncols_data) {
return;
}
dst[idst + WARP_SIZE] = result.y;
}
#else
(void) x; (void) y; (void) dst; (void) ncols_par; (void) nrows_y; (void) scale;
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
}
template <bool vals_smem, int ncols_template, int block_size_template> template <bool vals_smem, int ncols_template, int block_size_template>
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) { static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template; const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x; const int tid = threadIdx.x;
const int rowx = blockIdx.x; const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template; const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE; const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE;
float slope = 0.0f;
// ALiBi
if (max_bias > 0.0f) {
const int h = rowx/nrows_y; // head index
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = powf(base, exp);
}
extern __shared__ float data_soft_max_f32[]; extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
// shared memory buffer to cache values between iterations: // shared memory buffer to cache values between iterations:
@ -6117,7 +5999,8 @@ static __global__ void soft_max_f32(const float * x, const float * y, float * ds
const int ix = rowx*ncols + col; const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col; const int iy = rowy*ncols + col;
const float val = x[ix]*scale + (y ? y[iy] : 0.0f); const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + slope*pos[col];
vals[col] = val; vals[col] = val;
max_val = max(max_val, val); max_val = max(max_val, val);
} }
@ -7589,89 +7472,53 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past); diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
} }
static void soft_max_f16_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
int nth = WARP_SIZE;
while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
const size_t shmem = (GGML_PAD(ncols_x, 2*WARP_SIZE) + WARP_SIZE)*sizeof(half);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
if (shmem <= g_device_caps[g_main_device].smpb) {
switch (ncols_x) {
case 32:
soft_max_f16<true, 32, 32, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 64:
soft_max_f16<true, 64, 32, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 128:
soft_max_f16<true, 128, 64, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 256:
soft_max_f16<true, 256, 128, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 512:
soft_max_f16<true, 512, 256, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 1024:
soft_max_f16<true, 1024, 512, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 2048:
soft_max_f16<true, 2048, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 4096:
soft_max_f16<true, 4096, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
default:
soft_max_f16<true, 0, 0, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
}
} else {
const size_t shmem_low = WARP_SIZE*sizeof(half);
soft_max_f16<false, 0, 0, true><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
}
}
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE; int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1); const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1); const dim3 block_nums(nrows_x, 1, 1);
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float); const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted."); static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
if (shmem < g_device_caps[g_main_device].smpb) { if (shmem < g_device_caps[g_main_device].smpb) {
switch (ncols_x) { switch (ncols_x) {
case 32: case 32:
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 64: case 64:
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 128: case 128:
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 256: case 256:
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 512: case 512:
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 1024: case 1024:
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 2048: case 2048:
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
case 4096: case 4096:
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
default: default:
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break; break;
} }
} else { } else {
const size_t shmem_low = WARP_SIZE*sizeof(float); const size_t shmem_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale); soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
} }
} }
@ -9092,28 +8939,34 @@ static void ggml_cuda_op_soft_max(
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0); const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src1 ? ggml_nrows(src1) : 1; const int64_t nrows_y = src0->ne[1];
float scale = 1.0f; float scale = 1.0f;
memcpy(&scale, dst->op_params, sizeof(float)); float max_bias = 0.0f;
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION >= CUDART_HMAX memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
#ifdef GGML_CUDA_F16 memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
const bool use_f16_soft_max = true;
#else
const bool use_f16_soft_max = false;
#endif // GGML_CUDA_F16
#else
const bool use_f16_soft_max = false;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && CUDART_VERSION >= CUDART_HMAX
if (use_f16_soft_max) { // positions tensor
soft_max_f16_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); float * src2_dd = dst_dd; // default to avoid null checks in the kernel
cuda_pool_alloc<float> src2_f;
ggml_tensor * src2 = dst->src[2];
const bool use_src2 = src2 != nullptr;
if (use_src2) {
const bool src2_on_device = use_src2 && src2->backend == GGML_BACKEND_GPU;
ggml_tensor_extra_gpu * src2_extra = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
if (src2_on_device) {
src2_dd = (float *) src2_extra->data_device[g_main_device];
} else { } else {
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); src2_dd = src2_f.alloc(ggml_nelements(src2));
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
}
} }
(void) dst; soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
} }
static void ggml_cuda_op_scale( static void ggml_cuda_op_scale(

View File

@ -728,6 +728,7 @@ static bool ggml_metal_graph_compute(
size_t offs_src0 = 0; size_t offs_src0 = 0;
size_t offs_src1 = 0; size_t offs_src1 = 0;
size_t offs_src2 = 0;
size_t offs_dst = 0; size_t offs_dst = 0;
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx]; id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
@ -746,6 +747,7 @@ static bool ggml_metal_graph_compute(
struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src0 = gf->nodes[i]->src[0];
struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * src1 = gf->nodes[i]->src[1];
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
struct ggml_tensor * dst = gf->nodes[i]; struct ggml_tensor * dst = gf->nodes[i];
switch (dst->op) { switch (dst->op) {
@ -807,6 +809,7 @@ static bool ggml_metal_graph_compute(
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil; id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil;
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil; id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil;
id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil; id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
@ -1189,6 +1192,15 @@ static bool ggml_metal_graph_compute(
} }
const float scale = ((float *) dst->op_params)[0]; const float scale = ((float *) dst->op_params)[0];
const float max_bias = ((float *) dst->op_params)[1];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@ -1197,11 +1209,20 @@ static bool ggml_metal_graph_compute(
} else { } else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
} }
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; if (id_src2) {
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; } else {
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6]; }
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6];
[encoder setBytes:&scale length:sizeof(scale) atIndex:7];
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:9];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:10];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
@ -1514,8 +1535,6 @@ static bool ggml_metal_graph_compute(
// max size of the src1ids array in the kernel stack // max size of the src1ids array in the kernel stack
GGML_ASSERT(ne11 <= 512); GGML_ASSERT(ne11 <= 512);
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
const int64_t ne20 = src2 ? src2->ne[0] : 0; const int64_t ne20 = src2 ? src2->ne[0] : 0;
const int64_t ne21 = src2 ? src2->ne[1] : 0; const int64_t ne21 = src2 ? src2->ne[1] : 0;
const int64_t ne22 = src2 ? src2->ne[2] : 0; const int64_t ne22 = src2 ? src2->ne[2] : 0;

View File

@ -351,11 +351,16 @@ kernel void kernel_sum_rows(
kernel void kernel_soft_max( kernel void kernel_soft_max(
device const float * src0, device const float * src0,
device const float * src1, device const float * src1,
device const float * src2,
device float * dst, device float * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
constant float & scale, constant float & scale,
constant float & max_bias,
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
threadgroup float * buf [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
@ -368,13 +373,26 @@ kernel void kernel_soft_max(
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
device const float * ppos = src2 != src0 ? src2 : nullptr;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
float slope = 0.0f;
// ALiBi
if (max_bias > 0.0f) {
const int64_t h = i02;
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max // parallel max
float lmax = -INFINITY; float lmax = -INFINITY;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)); lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]);
} }
// find the max value in the block // find the max value in the block
@ -399,7 +417,7 @@ kernel void kernel_soft_max(
// parallel sum // parallel sum
float lsum = 0.0f; float lsum = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) { for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val); const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val);
lsum += exp_psrc0; lsum += exp_psrc0;
pdst[i00] = exp_psrc0; pdst[i00] = exp_psrc0;
} }
@ -437,11 +455,16 @@ kernel void kernel_soft_max(
kernel void kernel_soft_max_4( kernel void kernel_soft_max_4(
device const float * src0, device const float * src0,
device const float * src1, device const float * src1,
device const float * src2,
device float * dst, device float * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
constant float & scale, constant float & scale,
constant float & max_bias,
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
threadgroup float * buf [[threadgroup(0)]], threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]], uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]], uint tpitg[[thread_position_in_threadgroup]],
@ -454,13 +477,25 @@ kernel void kernel_soft_max_4(
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr;
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
float slope = 0.0f;
if (max_bias > 0.0f) {
const int64_t h = i02;
const float base = h < n_head_log2 ? m0 : m1;
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
slope = pow(base, exp);
}
// parallel max // parallel max
float4 lmax4 = -INFINITY; float4 lmax4 = -INFINITY;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)); lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]);
} }
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
@ -486,7 +521,7 @@ kernel void kernel_soft_max_4(
// parallel sum // parallel sum
float4 lsum4 = 0.0f; float4 lsum4 = 0.0f;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val); const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val);
lsum4 += exp_psrc4; lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4; pdst4[i00] = exp_psrc4;
} }

82
ggml.c
View File

@ -5096,16 +5096,28 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * mask, struct ggml_tensor * mask,
struct ggml_tensor * pos,
float scale, float scale,
float max_bias,
bool inplace) { bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a)); GGML_ASSERT(ggml_is_contiguous(a));
if (mask) { if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask)); GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1); GGML_ASSERT(ggml_is_matrix(mask));
GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(ggml_can_repeat_rows(mask, a)); GGML_ASSERT(ggml_can_repeat_rows(mask, a));
} }
if (pos) {
GGML_ASSERT(ggml_is_vector(pos));
GGML_ASSERT(pos->type == GGML_TYPE_F32);
GGML_ASSERT(pos->ne[0] == a->ne[0]);
}
if (max_bias > 0.0f) {
GGML_ASSERT(pos);
}
bool is_node = false; bool is_node = false;
if (a->grad) { if (a->grad) {
@ -5114,13 +5126,14 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
float params[] = { scale }; float params[] = { scale, max_bias };
ggml_set_op_params(result, params, sizeof(params)); ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SOFT_MAX; result->op = GGML_OP_SOFT_MAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = mask; result->src[1] = mask;
result->src[2] = pos;
return result; return result;
} }
@ -5128,21 +5141,23 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * ggml_soft_max( struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a) { struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false); return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
} }
struct ggml_tensor * ggml_soft_max_inplace( struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a) { struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true); return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
} }
struct ggml_tensor * ggml_soft_max_ext( struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * mask, struct ggml_tensor * mask,
float scale) { struct ggml_tensor * pos,
return ggml_soft_max_impl(ctx, a, mask, scale, false); float scale,
float max_bias) {
return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
} }
// ggml_soft_max_back // ggml_soft_max_back
@ -11495,6 +11510,7 @@ static void ggml_compute_forward_soft_max_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
assert(ggml_is_contiguous(dst)); assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst)); assert(ggml_are_same_shape(src0, dst));
@ -11504,15 +11520,28 @@ static void ggml_compute_forward_soft_max_f32(
} }
float scale = 1.0f; float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
// TODO: handle transposed/permuted matrices // TODO: handle transposed/permuted matrices
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int64_t ne11 = src1 ? src1->ne[1] : 1; const int64_t ne11 = src1 ? src1->ne[1] : 1;
// TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
const uint32_t n_head_kv = ne02;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
const int nc = src0->ne[0]; const int nc = src0->ne[0];
const int nr = ggml_nrows(src0); const int nr = ggml_nrows(src0);
@ -11525,6 +11554,9 @@ static void ggml_compute_forward_soft_max_f32(
float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
// when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
float * pos = src2 ? (float *) src2->data : src0->data;
for (int i1 = ir0; i1 < ir1; i1++) { for (int i1 = ir0; i1 < ir1; i1++) {
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
@ -11538,6 +11570,16 @@ static void ggml_compute_forward_soft_max_f32(
ggml_vec_acc_f32(nc, wp, mp); ggml_vec_acc_f32(nc, wp, mp);
} }
// ALiBi bias
if (max_bias > 0.0f) {
const uint32_t h = (i1/ne01)%ne02; // head
const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
for (int i = 0; i < nc; i++) {
wp[i] = wp[i] + slope*pos[i];
}
}
#ifndef NDEBUG #ifndef NDEBUG
for (int i = 0; i < nc; ++i) { for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]); //printf("p[%d] = %f\n", i, p[i]);
@ -11582,11 +11624,12 @@ static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_soft_max_f32(params, src0, src1, dst); ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst);
} break; } break;
default: default:
{ {
@ -11730,14 +11773,8 @@ static void ggml_compute_forward_alibi_f32(
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int64_t i = 0; i < ne0; i++) {
for (int64_t j = 0; j < ne1; j++) {
for (int64_t k = 0; k < ne2_ne3; k++) { for (int64_t k = 0; k < ne2_ne3; k++) {
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
// TODO: k*nb2 or k*nb3 // TODO: k*nb2 or k*nb3
float m_k; float m_k;
if (k < n_heads_log2_floor) { if (k < n_heads_log2_floor) {
@ -11746,6 +11783,10 @@ static void ggml_compute_forward_alibi_f32(
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
} }
for (int64_t i = 0; i < ne0; i++) {
for (int64_t j = 0; j < ne1; j++) {
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
pdst[0] = i * m_k + src[0]; pdst[0] = i * m_k + src[0];
} }
} }
@ -11790,14 +11831,8 @@ static void ggml_compute_forward_alibi_f16(
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
for (int k = 0; k < ne2_ne3; k++) { for (int k = 0; k < ne2_ne3; k++) {
ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
// TODO: k*nb2 or k*nb3 // TODO: k*nb2 or k*nb3
float m_k; float m_k;
if (k < n_heads_log2_floor) { if (k < n_heads_log2_floor) {
@ -11806,6 +11841,11 @@ static void ggml_compute_forward_alibi_f16(
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
} }
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
// we return F32 // we return F32
pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]); pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
} }
@ -15116,7 +15156,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor); ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
} break; } break;
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
{ {

13
ggml.h
View File

@ -1383,13 +1383,17 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// fused soft_max(a*scale + mask) // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
// mask is optional // mask is optional
// pos is required when max_bias > 0.0f
// max_bias = 0.0f for no ALiBi
GGML_API struct ggml_tensor * ggml_soft_max_ext( GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * mask, struct ggml_tensor * mask,
float scale); struct ggml_tensor * pos,
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_back( GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1491,12 +1495,13 @@ extern "C" {
// alibi position embedding // alibi position embedding
// in-place, returns view(a) // in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_alibi( GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
int n_past, int n_past,
int n_head, int n_head,
float bias_max); float bias_max),
"use ggml_soft_max_ext instead (will be removed in Mar 2024)");
// clamp // clamp
// in-place, returns view(a) // in-place, returns view(a)

129
llama.cpp
View File

@ -1557,12 +1557,13 @@ struct llama_hparams {
uint32_t n_yarn_orig_ctx; uint32_t n_yarn_orig_ctx;
int32_t rope_scaling_type_train; int32_t rope_scaling_type_train;
float f_clamp_kqv; float f_clamp_kqv = 0.0f;
float f_max_alibi_bias; float f_max_alibi_bias = 0.0f;
bool causal_attn = true; bool causal_attn = true;
uint32_t pooling_type = LLAMA_POOLING_NONE; bool need_kq_pos = false;
uint32_t pooling_type = LLAMA_POOLING_NONE;
bool operator!=(const llama_hparams & other) const { bool operator!=(const llama_hparams & other) const {
if (this->vocab_only != other.vocab_only) return true; if (this->vocab_only != other.vocab_only) return true;
@ -1923,6 +1924,7 @@ struct llama_context {
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch] struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
struct ggml_tensor * inp_KQ_pos; // F32 [n_ctx]
struct ggml_tensor * inp_K_shift; // I32 [n_ctx] struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch]
@ -3054,6 +3056,11 @@ static void llm_load_hparams(
case 40: model.type = e_model::MODEL_13B; break; case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
if (model.type == e_model::MODEL_13B) {
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
}
} break; } break;
case LLM_ARCH_STARCODER: case LLM_ARCH_STARCODER:
{ {
@ -3081,6 +3088,9 @@ static void llm_load_hparams(
case 32: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_1B; break;
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
} break; } break;
case LLM_ARCH_BERT: case LLM_ARCH_BERT:
{ {
@ -3126,11 +3136,12 @@ static void llm_load_hparams(
case 4096: model.type = e_model::MODEL_7B; break; case 4096: model.type = e_model::MODEL_7B; break;
} break; } break;
} }
// TODO: become GGUF KV parameter
hparams.f_max_alibi_bias = 8.0f;
} break; } break;
case LLM_ARCH_MPT: case LLM_ARCH_MPT:
{ {
hparams.f_clamp_kqv = 0.0f;
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
@ -3232,6 +3243,10 @@ static void llm_load_hparams(
} }
model.ftype = ml.ftype; model.ftype = ml.ftype;
if (hparams.f_max_alibi_bias > 0.0f) {
hparams.need_kq_pos = true;
}
} }
// TODO: This should probably be in llama.h // TODO: This should probably be in llama.h
@ -4774,10 +4789,10 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * wo_b, struct ggml_tensor * wo_b,
struct ggml_tensor * q_cur, struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask, struct ggml_tensor * kq_mask,
struct ggml_tensor * kq_pos,
int64_t n_ctx, int64_t n_ctx,
int32_t n_tokens, int32_t n_tokens,
int32_t n_kv, int32_t n_kv,
float max_alibi_bias,
float kq_scale, float kq_scale,
const llm_build_cb & cb, const llm_build_cb & cb,
int il) { int il) {
@ -4807,26 +4822,26 @@ static struct ggml_tensor * llm_build_kqv(
ggml_mul_mat_set_prec(kq, GGML_PREC_F32); ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
} }
if (max_alibi_bias > 0.0f) { #if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL)
// temporary branch until we figure out how to handle ggml_alibi through ggml_add #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL")
#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
if (hparams.f_max_alibi_bias > 0.0f) {
kq = ggml_scale(ctx, kq, kq_scale); kq = ggml_scale(ctx, kq, kq_scale);
cb(kq, "kq_scaled", il); cb(kq, "kq_scaled", il);
if (max_alibi_bias > 0.0f) { kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
// TODO: n_head or n_head_kv
// TODO: K-shift is likely not working
// TODO: change to ggml_add
kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, max_alibi_bias);
cb(kq, "kq_scaled_alibi", il); cb(kq, "kq_scaled_alibi", il);
}
kq = ggml_add(ctx, kq, kq_mask); kq = ggml_add(ctx, kq, kq_mask);
cb(kq, "kq_masked", il); cb(kq, "kq_masked", il);
kq = ggml_soft_max(ctx, kq); kq = ggml_soft_max(ctx, kq);
cb(kq, "kq_soft_max", il); cb(kq, "kq_soft_max", il);
} else { } else
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); #endif
{
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
cb(kq, "kq_soft_max_ext", il); cb(kq, "kq_soft_max_ext", il);
} }
@ -4874,11 +4889,11 @@ static struct ggml_tensor * llm_build_kv(
struct ggml_tensor * v_cur, struct ggml_tensor * v_cur,
struct ggml_tensor * q_cur, struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask, struct ggml_tensor * kq_mask,
struct ggml_tensor * kq_pos,
int64_t n_ctx, int64_t n_ctx,
int32_t n_tokens, int32_t n_tokens,
int32_t kv_head, int32_t kv_head,
int32_t n_kv, int32_t n_kv,
float max_alibi_bias,
float kq_scale, float kq_scale,
const llm_build_cb & cb, const llm_build_cb & cb,
int il) { int il) {
@ -4892,9 +4907,8 @@ static struct ggml_tensor * llm_build_kv(
llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
struct ggml_tensor * cur; struct ggml_tensor * cur;
cur = llm_build_kqv(ctx, model, hparams, kv, graph, cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
wo, wo_b, q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
q_cur, kq_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, kq_scale, cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
return cur; return cur;
@ -5077,7 +5091,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5207,6 +5221,10 @@ struct llm_build_context {
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// positions of the tokens in the KV cache
struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
cb(KQ_pos, "KQ_pos", -1);
// shift the entire K-cache if needed // shift the entire K-cache if needed
if (do_rope_shift) { if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
@ -5255,12 +5273,9 @@ struct llm_build_context {
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
// apply ALiBi for 13B model
const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f;
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5384,7 +5399,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5483,7 +5498,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5688,7 +5703,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Q, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5750,6 +5765,10 @@ struct llm_build_context {
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// positions of the tokens in the KV cache
struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
cb(KQ_pos, "KQ_pos", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL; struct ggml_tensor * inpSA = inpL;
@ -5777,7 +5796,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5878,7 +5897,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} else { } else {
// compute Q and K and RoPE them // compute Q and K and RoPE them
@ -5909,7 +5928,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5985,6 +6004,10 @@ struct llm_build_context {
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// positions of the tokens in the KV cache
struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
cb(KQ_pos, "KQ_pos", -1);
inpL = llm_build_norm(ctx0, inpL, hparams, inpL = llm_build_norm(ctx0, inpL, hparams,
model.tok_norm, model.tok_norm,
model.tok_norm_b, model.tok_norm_b,
@ -6018,7 +6041,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6078,6 +6101,10 @@ struct llm_build_context {
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1); cb(KQ_mask, "KQ_mask", -1);
// positions of the tokens in the KV cache
struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
cb(KQ_pos, "KQ_pos", -1);
for (int il = 0; il < n_layer; ++il) { for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm;
@ -6111,7 +6138,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6233,7 +6260,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6348,7 +6375,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6469,7 +6496,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6596,7 +6623,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f, cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6699,7 +6726,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
struct ggml_tensor * sa_out = cur; struct ggml_tensor * sa_out = cur;
@ -6798,7 +6825,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6907,7 +6934,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -7025,7 +7052,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -7144,7 +7171,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -7276,7 +7303,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -7507,6 +7534,18 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
} }
} }
if (hparams.need_kq_pos) {
const int64_t n_kv = kv_self.n;
assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
float * data = (float *) lctx.inp_KQ_pos->data;
for (int i = 0; i < n_kv; ++i) {
data[i] = float(lctx.kv_self.cells[i].pos);
}
}
if (kv_self.has_shift) { if (kv_self.has_shift) {
const int64_t n_ctx = cparams.n_ctx; const int64_t n_ctx = cparams.n_ctx;
@ -11434,7 +11473,7 @@ struct llama_context * llama_new_context_with_model(
// graph inputs // graph inputs
{ {
ggml_init_params init_params = { ggml_init_params init_params = {
/* .mem_size */ ggml_tensor_overhead()*7, /* .mem_size */ ggml_tensor_overhead()*8,
/* .mem_buffer */ nullptr, /* .mem_buffer */ nullptr,
/* .no_alloc */ true, /* .no_alloc */ true,
}; };
@ -11444,6 +11483,7 @@ struct llama_context * llama_new_context_with_model(
ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch); ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch); ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx);
ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx); ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch); ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
@ -11452,6 +11492,7 @@ struct llama_context * llama_new_context_with_model(
ggml_set_name(ctx->inp_embd, "inp_embd"); ggml_set_name(ctx->inp_embd, "inp_embd");
ggml_set_name(ctx->inp_pos, "inp_pos"); ggml_set_name(ctx->inp_pos, "inp_pos");
ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask"); ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos");
ggml_set_name(ctx->inp_K_shift, "inp_K_shift"); ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
ggml_set_name(ctx->inp_mean, "inp_mean"); ggml_set_name(ctx->inp_mean, "inp_mean");
ggml_set_name(ctx->inp_cls, "inp_cls"); ggml_set_name(ctx->inp_cls, "inp_cls");

View File

@ -1085,24 +1085,32 @@ struct test_diag_mask_inf : public test_case {
struct test_soft_max : public test_case { struct test_soft_max : public test_case {
const ggml_type type; const ggml_type type;
const std::array<int64_t, 4> ne; const std::array<int64_t, 4> ne;
const float scale;
const bool mask; const bool mask;
const float scale;
const float max_bias;
std::string vars() override { std::string vars() override {
return VARS_TO_STR4(type, ne, scale, mask); return VARS_TO_STR5(type, ne, mask, scale, max_bias);
} }
test_soft_max(ggml_type type = GGML_TYPE_F32, test_soft_max(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10}, std::array<int64_t, 4> ne = {10, 10, 10, 10},
bool mask = false,
float scale = 1.0f, float scale = 1.0f,
bool mask = false) float max_bias = 0.0f)
: type(type), ne(ne), scale(scale), mask(mask) {} : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * b = nullptr; ggml_tensor * mask = nullptr;
if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } if (this->mask) {
ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale); mask = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]);
}
ggml_tensor * pos = nullptr;
if (max_bias > 0.0f) {
pos = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
}
ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, pos, scale, max_bias);
return out; return out;
} }
}; };
@ -1147,30 +1155,6 @@ struct test_rope : public test_case {
} }
}; };
// GGML_OP_ALIBI
struct test_alibi : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
int n_past;
int n_head;
float bias_max;
std::string vars() override {
return VARS_TO_STR5(type, ne, n_past, n_head, bias_max);
}
test_alibi(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10},
int n_past = 512, int n_head = 10, float bias_max = 0.5f)
: type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max);
return out;
}
};
// GGML_OP_POOL2D // GGML_OP_POOL2D
struct test_pool2d : public test_case { struct test_pool2d : public test_case {
enum ggml_op_pool pool_type; enum ggml_op_pool pool_type;
@ -1488,7 +1472,7 @@ struct test_moe : public test_case {
ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens); ggml_tensor * cur = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_tokens);
ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur); ggml_tensor * logits = ggml_mul_mat(ctx, ffn_gate_inp, cur);
ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, 1.0f/sqrtf(n_embd)); ggml_tensor * probs = ggml_soft_max_ext(ctx, logits, nullptr, nullptr, 1.0f/sqrtf(n_embd), 0.0f);
// select experts // select experts
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok); ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_experts_per_tok);
@ -1617,7 +1601,6 @@ public:
ggml_cpy(ctx, v_cur_t, v_cache_view); ggml_cpy(ctx, v_cur_t, v_cache_view);
} }
// if max_alibi_bias > 0 then apply ALiBi
struct ggml_tensor * llm_build_kqv( struct ggml_tensor * llm_build_kqv(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * k_l, struct ggml_tensor * k_l,
@ -1636,7 +1619,7 @@ public:
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); kq = ggml_soft_max_ext(ctx, kq, kq_mask, nullptr, kq_scale, 0.0f);
// split cached v into n_head heads // split cached v into n_head heads
struct ggml_tensor * v = struct ggml_tensor * v =
@ -2083,6 +2066,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
#if 0
std::uniform_int_distribution<> dist_ne1(1, 50); std::uniform_int_distribution<> dist_ne1(1, 50);
int exponent = 1; int exponent = 1;
while (exponent < (1 << 17)) { while (exponent < (1 << 17)) {
@ -2091,14 +2075,29 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (int n = 0; n < 10; ++n) { for (int n = 0; n < 10; ++n) {
int64_t ne0 = dist_ne0(rng); int64_t ne0 = dist_ne0(rng);
int64_t ne1 = dist_ne1(rng); int64_t ne1 = dist_ne1(rng);
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1})); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
} }
exponent <<= 1; exponent <<= 1;
} }
#endif
for (bool mask : {false, true}) {
for (float max_bias : {0.0f, 8.0f}) {
for (float scale : {1.0f, 0.1f}) {
for (int64_t ne0 : {16, 1024}) {
for (int64_t ne1 : {16, 1024}) {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
}
}
}
}
}
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
@ -2113,7 +2112,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2) test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
} }
test_cases.emplace_back(new test_alibi());
test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32));