CUDA: faster softmax via shared memory + fp16 math (#4742)

This commit is contained in:
Johannes Gäßler 2024-01-09 08:58:55 +01:00 committed by GitHub
parent 1fc2f265ff
commit 8f900abfc0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 321 additions and 29 deletions

View File

@ -116,6 +116,7 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-backend-impl.h" #include "ggml-backend-impl.h"
#define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700 #define CC_VOLTA 700
#define CC_OFFSET_AMD 1000000 #define CC_OFFSET_AMD 1000000
@ -556,11 +557,12 @@ static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
struct cuda_device_capabilities { struct cuda_device_capabilities {
int cc; // compute capability int cc; // compute capability
size_t smpb; // max. shared memory per block
bool vmm; // virtual memory support bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory size_t vmm_granularity; // granularity of virtual memory
}; };
static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, false, 0} }; static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, 0, false, 0} };
static void * g_scratch_buffer = nullptr; static void * g_scratch_buffer = nullptr;
static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_size = 0; // disabled by default
@ -593,6 +595,19 @@ static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
return a; return a;
} }
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#if __CUDA_ARCH__ < CC_PASCAL || (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
(void) a;
bad_arch();
#else
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
}
return a;
#endif // __CUDA_ARCH__ < CC_PASCAL || (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
}
static __device__ __forceinline__ float warp_reduce_max(float x) { static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll #pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) { for (int mask = 16; mask > 0; mask >>= 1) {
@ -601,6 +616,19 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
return x; return x;
} }
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if __CUDA_ARCH__ < CC_PASCAL || (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
(void) x;
bad_arch();
#else
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
}
return x;
#endif // __CUDA_ARCH__ < CC_PASCAL || (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
}
static __device__ __forceinline__ float op_repeat(const float a, const float b) { static __device__ __forceinline__ float op_repeat(const float a, const float b) {
return b; return b;
GGML_UNUSED(a); GGML_UNUSED(a);
@ -5385,75 +5413,233 @@ static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX; dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
} }
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols, const int nrows_y, const float scale) { template <bool vals_smem, int ncols_template, int block_size_template, bool need_check>
static __global__ void soft_max_f16(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
const int ncols_data = ncols_template == 0 ? ncols_par : ncols_template;
const int ncols_smem = GGML_PAD(ncols_data, 2*WARP_SIZE)/2;
const int tid = threadIdx.x; const int tid = threadIdx.x;
const int rowx = blockIdx.x; const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = blockDim.x; const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE; const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE; const int lane_id = threadIdx.x % WARP_SIZE;
__shared__ float buf[CUDA_SOFT_MAX_BLOCK_SIZE/WARP_SIZE]; extern __shared__ half data_soft_max_f16[];
half * buf_iw = data_soft_max_f16 + 0; // shared memory buffer for inter-warp communication
// (shared memory) buffer to cache values between iterations:
half2 * vals = vals_smem ? (half2 *) (buf_iw + WARP_SIZE) : (half2 *) (dst + rowx*ncols_data);
// if the buffer is larger than max. shared memory per block, use dst as temp. buffer instead
// in that case col_smem == col_data must be enforced to avoid race conditions
float max_val = -INFINITY; half2 max_val = make_half2(-INFINITY, -INFINITY);
for (int col = tid; col < ncols; col += block_size) { #pragma unroll
const int ix = rowx*ncols + col; for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int iy = rowy*ncols + col; const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
max_val = max(max_val, x[ix]*scale + (y ? y[iy] : 0.0f)); const int col_smem = vals_smem ? col0 + tid : col_data;
const int ix = rowx*ncols_data + col_data;
const int iy = rowy*ncols_data + col_data;
half2 val;
if (need_check && col_data + 0 >= ncols_data) {
val.x = -INFINITY;
} else {
val.x = x[ix + 0]*scale + (y ? y[iy + 0] : 0.0f);
}
if (need_check && col_data + WARP_SIZE >= ncols_data) {
val.y = -INFINITY;
} else {
val.y = x[ix + WARP_SIZE]*scale + (y ? y[iy + WARP_SIZE] : 0.0f);
}
if (!need_check || col_smem < (vals_smem ? ncols_smem : ncols_data)) {
vals[col_smem] = val;
}
max_val = __hmax2(max_val, val);
} }
// find the max value in the block // find the max value in the block
max_val = warp_reduce_max(max_val); max_val = warp_reduce_max(max_val);
if (block_size > WARP_SIZE) { if (block_size > WARP_SIZE) {
if (warp_id == 0) { if (warp_id == 0) {
buf[lane_id] = -INFINITY; buf_iw[lane_id] = -INFINITY;
} }
__syncthreads(); __syncthreads();
if (lane_id == 0) { if (lane_id == 0) {
buf[warp_id] = max_val; buf_iw[warp_id] = __hmax(max_val.x, max_val.y);
} }
__syncthreads(); __syncthreads();
max_val = buf[lane_id]; max_val = __half2half2(buf_iw[lane_id]);
max_val = warp_reduce_max(max_val); max_val = warp_reduce_max(max_val);
} else {
max_val = __half2half2(__hmax(max_val.x, max_val.y));
} }
float tmp = 0.f; half2 tmp = make_half2(0.0f, 0.0f); // partial sums
#pragma unroll
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int col_smem = vals_smem ? col0 + tid : 2*col0 + 2*warp_id*WARP_SIZE + lane_id;
if (ncols_template == 0 && col_smem >= (vals_smem ? ncols_smem : ncols_data)) {
break;
}
const half2 val = h2exp(vals[col_smem] - max_val);
for (int col = tid; col < ncols; col += block_size) {
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = expf((x[ix]*scale + (y ? y[iy] : 0.0f)) - max_val);
tmp += val; tmp += val;
dst[ix] = val; vals[col_smem] = val;
} }
// find the sum of exps in the block // find the sum of exps in the block
tmp = warp_reduce_sum(tmp); tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) { if (block_size > WARP_SIZE) {
if (warp_id == 0) { if (warp_id == 0) {
buf[lane_id] = 0.f; buf_iw[lane_id] = 0.0f;
} }
__syncthreads(); __syncthreads();
if (lane_id == 0) { if (lane_id == 0) {
buf[warp_id] = tmp; buf_iw[warp_id] = tmp.x + tmp.y;
} }
__syncthreads(); __syncthreads();
tmp = buf[lane_id]; tmp = __half2half2(buf_iw[lane_id]);
tmp = warp_reduce_sum(tmp);
} else {
tmp = __half2half2(tmp.x + tmp.y);
}
const half2 inv_sum = make_half2(1.0f, 1.0f) / tmp;
#pragma unroll
for (int col0 = 0; col0 < ncols_smem; col0 += block_size) {
const int col_data = 2*col0 + 2*WARP_SIZE*warp_id + lane_id;
const int col_smem = vals_smem ? col0 + tid : col_data;
const int idst = rowx*ncols_data + col_data;
const half2 result = vals[col_smem] * inv_sum;
if (need_check && col_data + 0 >= ncols_data) {
return;
}
dst[idst] = result.x;
if (need_check && col_data + WARP_SIZE >= ncols_data) {
return;
}
dst[idst + WARP_SIZE] = result.y;
}
#else
(void) x; (void) y; (void) dst; (void) ncols_par; (void) nrows_y; (void) scale;
bad_arch();
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
}
template <bool vals_smem, int ncols_template, int block_size_template>
static __global__ void soft_max_f32(const float * x, const float * y, float * dst, const int ncols_par, const int nrows_y, const float scale) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
// shared memory buffer to cache values between iterations:
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
float max_val = -INFINITY;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
const float val = x[ix]*scale + (y ? y[iy] : 0.0f);
vals[col] = val;
max_val = max(max_val, val);
}
// find the max value in the block
max_val = warp_reduce_max(max_val);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf_iw[lane_id] = -INFINITY;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = max_val;
}
__syncthreads();
max_val = buf_iw[lane_id];
max_val = warp_reduce_max(max_val);
}
float tmp = 0.0f; // partial sum
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const float val = expf(vals[col] - max_val);
tmp += val;
vals[col] = val;
}
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf_iw[lane_id] = 0.0f;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = tmp;
}
__syncthreads();
tmp = buf_iw[lane_id];
tmp = warp_reduce_sum(tmp); tmp = warp_reduce_sum(tmp);
} }
const float inv_tmp = 1.f / tmp; const float inv_sum = 1.0f / tmp;
for (int col = tid; col < ncols; col += block_size) { #pragma unroll
const int i = rowx*ncols + col; for (int col0 = 0; col0 < ncols; col0 += block_size) {
dst[i] *= inv_tmp; const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
return;
}
const int idst = rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
} }
} }
@ -6752,12 +6938,90 @@ static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past); diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
} }
static void soft_max_f16_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE;
while (nth < ncols_x/2 && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
const size_t shmem = (GGML_PAD(ncols_x, 2*WARP_SIZE) + WARP_SIZE)*sizeof(half);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
if (shmem <= g_device_caps[g_main_device].smpb) {
switch (ncols_x) {
case 32:
soft_max_f16<true, 32, 32, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 64:
soft_max_f16<true, 64, 32, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 128:
soft_max_f16<true, 128, 64, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 256:
soft_max_f16<true, 256, 128, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 512:
soft_max_f16<true, 512, 256, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 1024:
soft_max_f16<true, 1024, 512, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 2048:
soft_max_f16<true, 2048, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 4096:
soft_max_f16<true, 4096, 1024, false><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
default:
soft_max_f16<true, 0, 0, true><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
}
} else {
const size_t shmem_low = WARP_SIZE*sizeof(half);
soft_max_f16<false, 0, 0, true><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
}
}
static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) { static void soft_max_f32_cuda(const float * x, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, cudaStream_t stream) {
int nth = WARP_SIZE; int nth = WARP_SIZE;
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2; while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1); const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1); const dim3 block_nums(nrows_x, 1, 1);
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols_x, nrows_y, scale); const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
if (shmem < g_device_caps[g_main_device].smpb) {
switch (ncols_x) {
case 32:
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 64:
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 128:
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 256:
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 512:
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 1024:
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 2048:
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
case 4096:
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
default:
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
break;
}
} else {
const size_t shmem_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, y, dst, ncols_x, nrows_y, scale);
}
} }
static void im2col_f32_f16_cuda(const float* x, half* dst, static void im2col_f32_f16_cuda(const float* x, half* dst,
@ -7072,6 +7336,7 @@ void ggml_init_cublas() {
#else #else
g_device_caps[id].cc = 100*prop.major + 10*prop.minor; g_device_caps[id].cc = 100*prop.major + 10*prop.minor;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
g_device_caps[id].smpb = prop.sharedMemPerBlock;
} }
for (int id = 0; id < g_device_count; ++id) { for (int id = 0; id < g_device_count; ++id) {
g_tensor_split[id] /= total_vram; g_tensor_split[id] /= total_vram;
@ -8087,7 +8352,21 @@ static void ggml_cuda_op_soft_max(
float scale = 1.0f; float scale = 1.0f;
memcpy(&scale, dst->op_params, sizeof(float)); memcpy(&scale, dst->op_params, sizeof(float));
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
const bool use_f16_soft_max = false;
#else
#ifdef GGML_CUDA_F16
const bool use_f16_soft_max = true;
#else
const bool use_f16_soft_max = false;
#endif // GGML_CUDA_F16
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
if (use_f16_soft_max) {
soft_max_f16_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
} else {
soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream); soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, main_stream);
}
(void) dst; (void) dst;
} }

View File

@ -450,7 +450,7 @@ struct test_case {
double err = nmse(f1.data(), f2.data(), f1.size()); double err = nmse(f1.data(), f2.data(), f1.size());
if (err > ud->max_err) { if (err > ud->max_err) {
printf("[%s] NMSE = %f ", ggml_op_desc(t1), err); printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
//for (int i = 0; i < (int) f1.size(); i++) { //for (int i = 0; i < (int) f1.size(); i++) {
// printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]); // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
//} //}
@ -1449,6 +1449,7 @@ struct test_moe : public test_case {
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
std::vector<std::unique_ptr<test_case>> test_cases; std::vector<std::unique_ptr<test_case>> test_cases;
std::default_random_engine rng(0);
const ggml_type all_types[] = { const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, GGML_TYPE_F16,
@ -1583,7 +1584,19 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5)); test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
test_cases.emplace_back(new test_soft_max()); std::uniform_int_distribution<> dist_ne1(1, 50);
int exponent = 1;
while (exponent < (1 << 17)) {
std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
for (int n = 0; n < 10; ++n) {
int64_t ne0 = dist_ne0(rng);
int64_t ne1 = dist_ne1(rng);
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}));
}
exponent <<= 1;
}
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B