This commit is contained in:
slaren 2024-08-17 01:51:06 +02:00
parent 33a5c8e37c
commit 9127800d83
3 changed files with 116 additions and 112 deletions

View File

@ -1329,11 +1329,19 @@ static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads)
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
uint64_t t_decode_total = 0;
uint64_t t_sync_total = 0;
for (int i = 0; i < n_gen; i++) {
uint64_t t_start = get_time_ns();
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
uint64_t t_decode = get_time_ns();
llama_synchronize(ctx);
uint64_t t_sync = get_time_ns();
t_decode_total += t_decode - t_start;
t_sync_total += t_sync - t_decode;
token = std::rand() % n_vocab;
}
//printf("decode: %lu us, sync: %lu us\n", t_decode_total / 1000 / n_gen, t_sync_total / 1000 / n_gen);
}
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {

View File

@ -130,22 +130,10 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
}
return res;
#else
#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
cudaError_t err;
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
{
err = cudaMallocManaged(ptr, size);
if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr) {
return cudaMallocManaged(ptr, size);
}
else
{
err = cudaMalloc(ptr, size);
}
return err;
#else
return cudaMalloc(ptr, size);
#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
#endif
}

View File

@ -2739,8 +2739,10 @@ struct llama_context {
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_t sched = nullptr;
std::vector<uint8_t> buf_compute_meta_next;
//std::vector<uint8_t> buf_compute_meta_next;
struct ggml_cgraph * gf_next = nullptr;
int pos_next = -1;
std::future<int> fut_next;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
@ -8446,15 +8448,14 @@ struct llm_build_context {
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
cb (cb),
buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) {
// all initializations should be done in init()
if (prepare_only) {
const uint32_t pad = llama_kv_cache_get_padding(cparams);
n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad)));
}
buf_compute_meta (lctx.buf_compute_meta) {
//buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) {
// all initializations should be done in init()
if (prepare_only) {
const uint32_t pad = llama_kv_cache_get_padding(cparams);
n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad)));
}
void init() {
//printf("n_kv: %d, kv_head: %d [%d]\n", n_kv, kv_head, prepare_only);
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute_meta.size(),
/*.mem_buffer =*/ buf_compute_meta.data(),
@ -8480,11 +8481,8 @@ struct llm_build_context {
lctx.inp_KQ_mask_cross = nullptr;
}
void free() {
if (ctx0) {
ggml_free(ctx0);
ctx0 = nullptr;
}
~llm_build_context() {
ggml_free(ctx0);
}
struct ggml_cgraph * build_k_shift() {
@ -13767,12 +13765,8 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const
struct llm_build_context llm(lctx, dummy, cb, false);
llm.init();
struct ggml_cgraph * result = llm.build_defrag(ids);
llm.free();
return result;
}
@ -13784,12 +13778,8 @@ static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
struct llm_build_context llm(lctx, dummy, cb, false);
llm.init();
struct ggml_cgraph * result = llm.build_k_shift();
llm.free();
return result;
}
@ -13801,12 +13791,8 @@ static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
struct llm_build_context llm(lctx, dummy, cb, false);
llm.init();
struct ggml_cgraph * result = llm.build_s_copy();
llm.free();
return result;
}
@ -13817,6 +13803,8 @@ static struct ggml_cgraph * llama_build_graph(
bool prepare_only = false) {
const auto & model = lctx.model;
//printf("llama_build_graph [%d]\n", prepare_only);
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
if (il >= 0) {
@ -13852,8 +13840,6 @@ static struct ggml_cgraph * llama_build_graph(
struct llm_build_context llm(lctx, batch, cb, worst_case, prepare_only);
llm.init();
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
@ -14022,8 +14008,6 @@ static struct ggml_cgraph * llama_build_graph(
result = llm.append_pooling(result);
}
llm.free();
return result;
}
@ -14548,6 +14532,13 @@ static int llama_decode_internal(
llama_batch batch_all, // TODO: rename back to batch
bool prepare_only = false) {
if (!prepare_only && lctx.fut_next.valid()) {
//int64_t t_start = ggml_time_us();
lctx.fut_next.wait();
//int64_t t_end = ggml_time_us();
//printf("waited %ld us\n", t_end - t_start);
}
lctx.is_encoding = false;
const uint32_t n_tokens_all = batch_all.n_tokens;
@ -14584,10 +14575,14 @@ static int llama_decode_internal(
const auto n_ubatch = cparams.n_ubatch;
// TODO: simplify or deprecate
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id_arr;
std::vector<std::vector<llama_seq_id>> seq_id;
static std::vector<llama_pos> pos;
static std::vector<int32_t> n_seq_id;
static std::vector<llama_seq_id *> seq_id_arr;
static std::vector<std::vector<llama_seq_id>> seq_id;
//pos.clear();
//n_seq_id.clear();
//seq_id_arr.clear();
//seq_id.clear();
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
@ -14605,7 +14600,7 @@ static int llama_decode_internal(
}
// reserve output buffer
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
if (!prepare_only && llama_output_reserve(lctx, n_outputs) < n_outputs) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
return -2;
};
@ -14624,7 +14619,8 @@ static int llama_decode_internal(
}
}
if (n_tokens_all != 1) {
if (lctx.gf_next && (n_tokens_all != 1 || batch_all.all_pos_0 != lctx.pos_next)) {
//printf("wasted graph %d (need %d)\n", lctx.pos_next, batch_all.all_pos_0);
lctx.gf_next = nullptr;
}
@ -14644,7 +14640,7 @@ static int llama_decode_internal(
};
// count the outputs in this u_batch
{
if (!prepare_only) {
int32_t n_outputs_new = 0;
if (u_batch.logits && !embd_pooled) {
@ -14664,78 +14660,78 @@ static int llama_decode_internal(
lctx.n_outputs = n_outputs_new;
}
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
GGML_ASSERT(n_threads > 0);
if (!prepare_only) {
// helpers for smoother batch API transition
// after deprecating the llama_eval calls, these will be removed
if (u_batch.pos == nullptr) {
pos.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
}
// helpers for smoother batch API transition
// after deprecating the llama_eval calls, these will be removed
if (u_batch.pos == nullptr) {
pos.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
u_batch.pos = pos.data();
}
u_batch.pos = pos.data();
}
if (u_batch.seq_id == nullptr) {
n_seq_id.resize(n_tokens);
seq_id.resize(n_tokens);
seq_id_arr.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
n_seq_id[i] = 1;
seq_id[i].resize(1);
seq_id[i][0] = u_batch.all_seq_id;
seq_id_arr[i] = seq_id[i].data();
}
if (u_batch.seq_id == nullptr) {
n_seq_id.resize(n_tokens);
seq_id.resize(n_tokens);
seq_id_arr.resize(n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) {
n_seq_id[i] = 1;
seq_id[i].resize(1);
seq_id[i][0] = u_batch.all_seq_id;
seq_id_arr[i] = seq_id[i].data();
u_batch.n_seq_id = n_seq_id.data();
u_batch.seq_id = seq_id_arr.data();
}
u_batch.n_seq_id = n_seq_id.data();
u_batch.seq_id = seq_id_arr.data();
}
// non-causal masks do not use the KV cache
if (hparams.causal_attn) {
//llama_kv_cache_update(&lctx);
// non-causal masks do not use the KV cache
if (hparams.causal_attn && !prepare_only) {
llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (kv_self.head > kv_self.used + 2*n_tokens) {
kv_self.head = 0;
}
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (kv_self.head > kv_self.used + 2*n_tokens) {
kv_self.head = 0;
}
if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
return 1;
}
if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
return 1;
}
if (!kv_self.recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
const uint32_t pad = llama_kv_cache_get_padding(cparams);
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
//kv_self.n = llama_kv_cache_cell_max(kv_self);
if (!kv_self.recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
const uint32_t pad = llama_kv_cache_get_padding(cparams);
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
//kv_self.n = llama_kv_cache_cell_max(kv_self);
}
}
}
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
ggml_cgraph * gf = lctx.gf_next;
if (!gf) {
//printf("building %d\n", u_batch.all_pos_0);
ggml_backend_sched_reset(lctx.sched);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
gf = llama_build_graph(lctx, u_batch, false, prepare_only);
ggml_backend_sched_alloc_graph(lctx.sched, gf);
if (prepare_only) {
//printf("prepared %d\n", u_batch.all_pos_0);
lctx.gf_next = gf;
lctx.pos_next = u_batch.all_pos_0;
return 0;
}
} else {
lctx.gf_next = nullptr;
//printf("using cached graph %d\n", u_batch.all_pos_0);
}
if (prepare_only) {
lctx.gf_next = gf;
return 0;
}
lctx.gf_next = nullptr;
// the output is always the last tensor in the graph
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
@ -14761,9 +14757,13 @@ static int llama_decode_internal(
}
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
llama_set_inputs(lctx, u_batch);
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
GGML_ASSERT(n_threads > 0);
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
llama_graph_compute(lctx, gf, n_threads);
// update the kv ring buffer
@ -14856,21 +14856,28 @@ static int llama_decode_internal(
if (fragmentation > cparams.defrag_thold) {
//LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
llama_kv_cache_defrag(kv_self);
//llama_kv_cache_defrag(kv_self);
}
}
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
// overlap with device computation.
ggml_backend_sched_reset(lctx.sched);
if (true && n_tokens_all == 1 && !prepare_only) {
//int64_t t_prepare_start_us = ggml_time_us();
if (n_tokens_all == 1 && !prepare_only) {
// prepare graph for the next token
llama_token next_token_dummy = 0;
llama_token * next_token_dummy = (llama_token *) 0x1;
llama_pos n_past = batch_all.all_pos_0 + 1;
llama_seq_id seq_id = 0;
llama_batch batch_next = llama_batch_get_one(&next_token_dummy, 1, n_past, seq_id);
llama_decode_internal(lctx, batch_next, true);
llama_seq_id seq_id = batch_all.all_seq_id;
llama_batch batch_next = llama_batch_get_one(next_token_dummy, 1, n_past, seq_id);
//llama_decode_internal(lctx, batch_next, true);
lctx.fut_next = std::async(std::launch::async, llama_decode_internal, std::ref(lctx), batch_next, true);
//int64_t t_prepare_us = ggml_time_us() - t_prepare_start_us;
//printf("prepare time: %ld us\n", t_prepare_us);
} else {
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
// overlap with device computation.
ggml_backend_sched_reset(lctx.sched);
}
return 0;
@ -16977,7 +16984,7 @@ struct llama_context * llama_new_context_with_model(
// buffer used to store the computation graph and the tensor meta data
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
//ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
bool pipeline_parallel =
@ -18564,6 +18571,7 @@ int32_t llama_decode(
}
void llama_synchronize(struct llama_context * ctx) {
//printf("llama_synchronize\n");
ggml_backend_sched_synchronize(ctx->sched);
// FIXME: if multiple single tokens are evaluated without a synchronization,