mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 04:24:30 +00:00
convert : write more metadata for LLaMA
This commit is contained in:
parent
9bf5a7efcb
commit
91d4bfd536
@ -17,6 +17,7 @@ from sentencepiece import SentencePieceProcessor
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
|
||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
@ -52,12 +53,12 @@ if len(sys.argv) > 2:
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
sys.exit()
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
@ -68,18 +69,23 @@ gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
llm_arch = "llama"
|
||||
head_count = hparams["num_attention_heads"]
|
||||
llm_arch = "llama"
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_architecture(llm_arch)
|
||||
gguf_writer.add_quantization_version(ftype)
|
||||
guff_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(llm_arch, block_count)
|
||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(llm_arch, head_count)
|
||||
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
||||
|
||||
|
||||
@ -173,7 +179,7 @@ for name in list_vars.keys():
|
||||
|
||||
# permute these
|
||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||
data = permute(data,head_count)
|
||||
data = permute(data, head_count)
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
@ -181,11 +187,11 @@ for name in list_vars.keys():
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print( "Can not map tensor '" + name + "'" )
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
data_dtype = data.dtype
|
||||
|
||||
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
|
||||
|
||||
@ -223,7 +229,7 @@ for name in list_vars.keys():
|
||||
data = permute(data, head_count)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
data_dtype = data.dtype
|
||||
|
||||
if data_dtype != np.float16 and data_dtype != np.float32:
|
||||
# convert any unsupported data types to float32
|
||||
@ -237,5 +243,5 @@ for name in list_vars.keys():
|
||||
gguf_writer.close()
|
||||
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'" )
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
|
23
gguf.py
23
gguf.py
@ -12,23 +12,10 @@ from typing import Any, IO, List
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
|
||||
class GGMLQuantizationType(IntEnum):
|
||||
F32 = 0
|
||||
F16 = 1
|
||||
Q4_0 = 2
|
||||
Q4_1 = 3
|
||||
# Q4_2 = 4 # support has been removed
|
||||
# Q4_3 = 5 # support has been removed
|
||||
Q5_0 = 6
|
||||
Q5_1 = 7
|
||||
Q8_0 = 8
|
||||
Q8_1 = 9
|
||||
Q2_K = 10
|
||||
Q3_K = 11
|
||||
Q4_K = 12
|
||||
Q5_K = 13
|
||||
Q6_K = 14
|
||||
Q8_K = 15
|
||||
|
||||
|
||||
class GGUFValueType(IntEnum):
|
||||
@ -143,7 +130,7 @@ class GGUFWriter:
|
||||
|
||||
if add_vtype:
|
||||
self.kv_data += struct.pack("<I", vtype)
|
||||
self.kv_data_count += 1;
|
||||
self.kv_data_count += 1
|
||||
|
||||
if vtype == GGUFValueType.UINT8:
|
||||
self.kv_data += struct.pack("<B", val)
|
||||
@ -201,7 +188,7 @@ class GGUFWriter:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
|
||||
tensor.tofile(self.fout)
|
||||
|
||||
|
||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
|
||||
if pad != 0:
|
||||
self.fout.write(bytes([0] * pad))
|
||||
@ -214,7 +201,7 @@ class GGUFWriter:
|
||||
|
||||
def add_architecture(self, architecture: str):
|
||||
self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
|
||||
architecture)
|
||||
architecture)
|
||||
|
||||
def add_author(self, author: str):
|
||||
self.add_string(constants.KEY_GENERAL_AUTHOR, author)
|
||||
@ -311,7 +298,7 @@ class GGUFWriter:
|
||||
|
||||
def add_token_scores(self, scores: List[float]):
|
||||
self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
|
||||
|
||||
|
||||
def add_bos_token_id(self, id: int):
|
||||
self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user