llama : add function for model-based max number of graph nodes (#8622)

* llama : model-based max number of graph nodes

ggml-ci

* llama : disable 405B max_nodes path due to lack of complaints

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-07-27 14:59:29 +03:00 committed by GitHub
parent 9d03d085dd
commit 92090eca21
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -101,7 +101,6 @@
#endif #endif
// bump if necessary // bump if necessary
#define LLAMA_MAX_NODES 8192
#define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
@ -3567,6 +3566,15 @@ namespace GGUFMeta {
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>; using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
// TODO: update when needed or think of some clever automatic way to do this
static size_t llama_model_max_nodes(const llama_model & /*model*/) {
//if (model.arch == LLM_ARCH_LLAMA && model.hparams.n_layer > ??) { // llama-3 405B
// return 32768;
//}
return 8192;
}
struct llama_model_loader { struct llama_model_loader {
int n_kv = 0; int n_kv = 0;
int n_tensors = 0; int n_tensors = 0;
@ -8396,7 +8404,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_k_shift() { struct ggml_cgraph * build_k_shift() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
GGML_ASSERT(kv_self.size == n_ctx); GGML_ASSERT(kv_self.size == n_ctx);
@ -8427,7 +8435,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_s_copy() { struct ggml_cgraph * build_s_copy() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
GGML_ASSERT(kv_self.recurrent); GGML_ASSERT(kv_self.recurrent);
@ -8450,7 +8458,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) { struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
for (uint32_t i = 0; i < ids.size(); ++i) { for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i]; const uint32_t id = ids[i];
@ -8691,7 +8699,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_llama() { struct ggml_cgraph * build_llama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -8834,7 +8842,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * build_baichuan() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -8949,7 +8957,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_xverse() { struct ggml_cgraph * build_xverse() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -9052,7 +9060,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_falcon() { struct ggml_cgraph * build_falcon() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -9172,7 +9180,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_grok() { struct ggml_cgraph * build_grok() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -9329,7 +9337,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_dbrx() { struct ggml_cgraph * build_dbrx() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -9455,7 +9463,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_starcoder() { struct ggml_cgraph * build_starcoder() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -9559,7 +9567,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_refact() { struct ggml_cgraph * build_refact() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -9653,7 +9661,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_bert() { struct ggml_cgraph * build_bert() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -9847,7 +9855,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_bloom() { struct ggml_cgraph * build_bloom() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -9948,7 +9956,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_mpt() { struct ggml_cgraph * build_mpt() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -10238,7 +10246,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_qwen() { struct ggml_cgraph * build_qwen() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -10350,7 +10358,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_qwen2() { struct ggml_cgraph * build_qwen2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -10462,7 +10470,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_qwen2moe() { struct ggml_cgraph * build_qwen2moe() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -10608,7 +10616,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_phi2() { struct ggml_cgraph * build_phi2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -10729,7 +10737,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_phi3() { struct ggml_cgraph * build_phi3() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -10961,7 +10969,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_gpt2() { struct ggml_cgraph * build_gpt2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -11066,7 +11074,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_codeshell() { struct ggml_cgraph * build_codeshell() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -11177,7 +11185,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_orion() { struct ggml_cgraph * build_orion() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -11295,7 +11303,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_internlm2() { struct ggml_cgraph * build_internlm2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -11416,7 +11424,7 @@ struct llm_build_context {
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738 // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
// based on the original build_llama() function // based on the original build_llama() function
struct ggml_cgraph * build_minicpm() { struct ggml_cgraph * build_minicpm() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -11560,7 +11568,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_gemma() { struct ggml_cgraph * build_gemma() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_head_k = hparams.n_embd_head_k;
@ -11668,7 +11676,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_gemma2() { struct ggml_cgraph * build_gemma2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_head_k = hparams.n_embd_head_k;
@ -11803,7 +11811,7 @@ struct llm_build_context {
struct ggml_cgraph * build_starcoder2() { struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -11922,7 +11930,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_mamba() { struct ggml_cgraph * build_mamba() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t d_model = n_embd; const int64_t d_model = n_embd;
const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_conv = hparams.ssm_d_conv;
@ -12071,7 +12079,7 @@ struct llm_build_context {
struct ggml_cgraph * build_command_r() { struct ggml_cgraph * build_command_r() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -12225,7 +12233,7 @@ struct llm_build_context {
// * removed bias // * removed bias
// * removed MoE // * removed MoE
struct ggml_cgraph * build_olmo() { struct ggml_cgraph * build_olmo() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -12349,7 +12357,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_openelm() { struct ggml_cgraph * build_openelm() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -12474,7 +12482,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_gptneox() { struct ggml_cgraph * build_gptneox() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -12616,7 +12624,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_arctic() { struct ggml_cgraph * build_arctic() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -12748,7 +12756,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_deepseek2() { struct ggml_cgraph * build_deepseek2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -12976,7 +12984,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_bitnet() { struct ggml_cgraph * build_bitnet() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@ -13116,7 +13124,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_t5() { struct ggml_cgraph * build_t5() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens // mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens; int32_t n_tokens = this->n_tokens;
@ -13433,7 +13441,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_jais() { struct ggml_cgraph * build_jais() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -13525,7 +13533,7 @@ struct llm_build_context {
} }
struct ggml_cgraph * build_chatglm() { struct ggml_cgraph * build_chatglm() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
@ -14870,9 +14878,9 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
// each move requires 6*n_layer tensors (see build_defrag) // each move requires 6*n_layer tensors (see build_defrag)
// - source view, destination view, copy operation // - source view, destination view, copy operation
// - x2 for keys and values // - x2 for keys and values
//const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); //const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer); const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where // determine which KV cells to move where
// //
@ -16762,8 +16770,10 @@ struct llama_context * llama_new_context_with_model(
} }
} }
const size_t max_nodes = llama_model_max_nodes(*model);
// buffer used to store the computation graph and the tensor meta data // buffer used to store the computation graph and the tensor meta data
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
bool pipeline_parallel = bool pipeline_parallel =
@ -16776,7 +16786,7 @@ struct llama_context * llama_new_context_with_model(
// currently this is only implemented in the CUDA backend // currently this is only implemented in the CUDA backend
pipeline_parallel = false; pipeline_parallel = false;
#endif #endif
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel); ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
if (pipeline_parallel) { if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));