diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 7711bd8d8..bf42df8fe 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -225,6 +225,17 @@ jobs: cd build ctest -L main --verbose --timeout 900 + - name: Test llama2c conversion + id: llama2c_test + run: | + cd build + echo "Fetch tokenizer" + wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin + echo "Fetch llama2c model" + wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin + ./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf + ./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256 + # ubuntu-latest-cmake-sanitizer: # runs-on: ubuntu-latest # diff --git a/examples/convert-llama2c-to-ggml/README.md b/examples/convert-llama2c-to-ggml/README.md index 0f37d295b..6da2d7e18 100644 --- a/examples/convert-llama2c-to-ggml/README.md +++ b/examples/convert-llama2c-to-ggml/README.md @@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface. `$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin` +Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K). + Now you can use the model with a command like: `$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256` diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index 8209dcb64..6b5c66530 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -1,6 +1,7 @@ #include "ggml.h" #include "llama.h" #include "common.h" +#include "log.h" #include #include @@ -78,111 +79,101 @@ typedef struct { struct TransformerWeights { // token embedding table - float* token_embedding_table; // (vocab_size, dim) + std::vector token_embedding_table; // (vocab_size, dim) // weights for rmsnorms - float* rms_att_weight; // (layer, dim) rmsnorm weights - float* rms_ffn_weight; // (layer, dim) + std::vector rms_att_weight; // (layer, dim) rmsnorm weights + std::vector rms_ffn_weight; // (layer, dim) // weights for matmuls - float* wq; // (layer, dim, dim) - float* wk; // (layer, dim, dim) - float* wv; // (layer, dim, dim) - float* wo; // (layer, dim, dim) + std::vector wq; // (layer, dim, dim) + std::vector wk; // (layer, dim, dim) + std::vector wv; // (layer, dim, dim) + std::vector wo; // (layer, dim, dim) // weights for ffn - float* w1; // (layer, hidden_dim, dim) - float* w2; // (layer, dim, hidden_dim) - float* w3; // (layer, hidden_dim, dim) + std::vector w1; // (layer, hidden_dim, dim) + std::vector w2; // (layer, dim, hidden_dim) + std::vector w3; // (layer, hidden_dim, dim) // final rmsnorm - float* rms_final_weight; // (dim,) + std::vector rms_final_weight; // (dim,) // freq_cis for RoPE relatively positional embeddings - // float* freq_cis_real; // (seq_len, dim/2) - // float* freq_cis_imag; // (seq_len, dim/2) + // std::vector freq_cis_real; // (seq_len, dim/2) + // std::vector freq_cis_imag; // (seq_len, dim/2) // (optional) classifier weights for the logits, on the last layer - float* wcls; - - ~TransformerWeights() { - delete[] token_embedding_table; - delete[] rms_att_weight; - delete[] rms_ffn_weight; - delete[] wq; - delete[] wk; - delete[] wv; - delete[] wo; - delete[] w1; - delete[] w2; - delete[] w3; - delete[] rms_final_weight; - delete[] wcls; - } + std::vector wcls; }; -static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) { - // we calloc instead of malloc to keep valgrind happy - w->token_embedding_table = new float[p->vocab_size * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); +static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) { + const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads; + try { + w->token_embedding_table.resize(p->vocab_size * p->dim); + LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); - w->rms_att_weight = new float[p->n_layers * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); + w->rms_att_weight.resize(p->n_layers * p->dim); + LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); - w->rms_ffn_weight = new float[p->n_layers * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); + w->rms_ffn_weight.resize(p->n_layers * p->dim); + LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); - w->wq = new float[p->n_layers * p->dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); + w->wq.resize(p->n_layers * p->dim * p->dim); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - w->wk = new float[p->n_layers * p->dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); + w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); - w->wv = new float[p->n_layers * p->dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); + w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); - w->wo = new float[p->n_layers * p->dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); + w->wo.resize(p->n_layers * p->dim * p->dim); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); + w->w1.resize(p->n_layers * p->hidden_dim * p->dim); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); - w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); + w->w2.resize(p->n_layers * p->hidden_dim * p->dim); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); - w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); + w->w3.resize(p->n_layers * p->hidden_dim * p->dim); + LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); - w->rms_final_weight = new float[p->dim](); - printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); + w->rms_final_weight.resize(p->dim); + LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); - if (shared_weights) { - w->wcls = NULL; - } else { - w->wcls = new float[p->vocab_size * p->dim](); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); + if (shared_weights) { + w->wcls = {}; + } else { + w->wcls.resize(p->vocab_size * p->dim); + LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); + } + } + catch (std::length_error &) { + die("Invalid configuration. Failed to allocate memory for weights"); } } -static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) { - if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; - if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast(p->n_layers * p->hidden_dim * p->dim)) return 1; - if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast(p->dim)) return 1; +static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) { + if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1; + if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1; + if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1; + if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1; + if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1; + if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1; + if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1; + if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1; + if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1; + if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1; + if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1; // Skip freq_cis_real & freq_cis_imag int head_size = p->dim / p->n_heads; fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR); - if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; + if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1; // Check we didn't forget to read anything auto curr = ftell(f); fseek(f, 0, SEEK_END); auto end = ftell(f); if (curr != end) { - printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end); + LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end); return 1; } @@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo } static void print_sample_weights(TransformerWeights *w){ - printf("----- Quick print of first of the weight vales of all the variables\n"); - printf("%f\n", w->token_embedding_table[0]); - printf("%f\n", w->rms_att_weight[0]); - printf("%f\n", w->rms_ffn_weight[0]); + LOG("----- Quick print of first of the weight vales of all the variables\n"); + LOG("%f\n", w->token_embedding_table[0]); + LOG("%f\n", w->rms_att_weight[0]); + LOG("%f\n", w->rms_ffn_weight[0]); - printf("%f\n", w->wq[0]); - printf("%f\n", w->wk[0]); - printf("%f\n", w->wv[0]); - printf("%f\n", w->wo[0]); - printf("%f\n", w->w1[0]); - printf("%f\n", w->w2[0]); - printf("%f\n", w->w3[0]); - printf("%f\n", w->rms_att_weight[0]); - if (w->wcls) printf("%f\n", w->wcls[0]); + LOG("%f\n", w->wq[0]); + LOG("%f\n", w->wk[0]); + LOG("%f\n", w->wv[0]); + LOG("%f\n", w->wo[0]); + LOG("%f\n", w->w1[0]); + LOG("%f\n", w->w2[0]); + LOG("%f\n", w->w3[0]); + LOG("%f\n", w->rms_att_weight[0]); + if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]); } //////////////////////////////////////////////////////////////////////////////////////////////////////////// @@ -225,14 +216,16 @@ struct llama_vocab { }; struct my_llama_hparams { - uint32_t n_vocab = 32000; - uint32_t n_ctx = 512; // this is provided as user input? - uint32_t n_embd = 4096; - uint32_t n_ff = 11008; - uint32_t n_mult = 4; - uint32_t n_head = 32; - uint32_t n_layer = 32; - uint32_t n_rot = 64; + uint32_t n_vocab = 32000; + uint32_t n_ctx = 512; // this is provided as user input? + uint32_t n_embd = 4096; + uint32_t n_ff = 11008; + uint32_t n_mult = 4; + uint32_t n_head = 32; + uint32_t n_head_kv = 32; + uint32_t n_layer = 32; + uint32_t n_rot = 64; + bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(my_llama_hparams)); } @@ -325,14 +318,30 @@ struct train_params { }; static void print_params(struct my_llama_hparams * params) { - printf("%s: n_vocab: %u\n", __func__, params->n_vocab); - printf("%s: n_ctx: %u\n", __func__, params->n_ctx); - printf("%s: n_embd: %u\n", __func__, params->n_embd); - printf("%s: n_mult: %u\n", __func__, params->n_mult); - printf("%s: n_head: %u\n", __func__, params->n_head); - printf("%s: n_ff: %u\n", __func__, params->n_ff); - printf("%s: n_layer: %u\n", __func__, params->n_layer); - printf("%s: n_rot: %u\n", __func__, params->n_rot); + LOG("%s: n_vocab: %u\n", __func__, params->n_vocab); + LOG("%s: n_ctx: %u\n", __func__, params->n_ctx); + LOG("%s: n_embd: %u\n", __func__, params->n_embd); + LOG("%s: n_mult: %u\n", __func__, params->n_mult); + LOG("%s: n_head: %u\n", __func__, params->n_head); + LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv); + LOG("%s: n_ff: %u\n", __func__, params->n_ff); + LOG("%s: n_layer: %u\n", __func__, params->n_layer); + LOG("%s: n_rot: %u\n", __func__, params->n_rot); +} + +static void print_tensor_info(const struct ggml_context * ctx) { + for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + LOG("%s: Allocating ", __func__); + int64_t total = 1; + int i = 0; + for (; i < ggml_n_dims(t); ++i) { + if (i > 0) LOG("x "); + LOG("[%" PRId64 "] ", t->ne[i]); + total *= t->ne[i]; + } + if (i > 1) LOG("= [%" PRId64 "] ", total); + LOG("float space for %s\n", ggml_get_name(t)); + } } static void init_model(struct my_llama_model * model) { @@ -342,6 +351,8 @@ static void init_model(struct my_llama_model * model) { const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; + const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv; + const uint32_t n_ff = hparams.n_ff; struct ggml_context * ctx = model->ctx; @@ -350,25 +361,8 @@ static void init_model(struct my_llama_model * model) { model->train_tokens = 0; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); - printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab); - model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd); - model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab); - - // printing the per-layer allocations here so we dont print in the for loop. - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); - - printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer); - - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer); - printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer); ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); ggml_set_name(model->norm, "norm.weight"); @@ -383,8 +377,8 @@ static void init_model(struct my_llama_model * model) { layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); + layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); @@ -406,6 +400,8 @@ static void init_model(struct my_llama_model * model) { ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); } + + print_tensor_info(ctx); } static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { @@ -421,9 +417,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); - printf(" %f", p); + LOG(" %f", p); } - printf("\n"); + LOG("\n"); } static void print_matrix(struct ggml_tensor * probs) { @@ -431,33 +427,12 @@ static void print_matrix(struct ggml_tensor * probs) { for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); + LOG(" %.2f", p); } - printf("\n"); + LOG("\n"); } } -#ifdef __GNUC__ -#ifdef __MINGW32__ -__attribute__((format(gnu_printf, 1, 2))) -#else -__attribute__((format(printf, 1, 2))) -#endif -#endif -static std::string format(const char * fmt, ...) { - va_list ap, ap2; - va_start(ap, fmt); - va_copy(ap2, ap); - int size = vsnprintf(NULL, 0, fmt, ap); - GGML_ASSERT(size >= 0 && size < INT_MAX); - std::vector buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), size); -} - struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; @@ -549,8 +524,9 @@ static std::string llama_escape_whitespaces(const std::string & text) { return out.str(); } -static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { +static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) { if (is_ggml_file(filename)) { + LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename); struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { @@ -578,6 +554,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); + if (n_vocab != static_cast(config->vocab_size)) { + die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size); + } vocab->id_to_token.resize(n_vocab); @@ -595,7 +574,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab gguf_free(ctx); } else { // assume llama2.c vocabulary - printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename); + LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); llama_file file(filename, "rb"); if (!file.fp) { die_fmt("%s: %s", strerror(errno), filename); @@ -638,38 +617,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab } static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { - int ct; - switch (ggml_n_dims(gg_weights)) { - case 1: - ct = 0; - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){ - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]); - *ptr = karpathy_weights[ct]; - ct++; - } - break; - case 2: - ct = 0; - for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]); - *ptr = karpathy_weights[ct]; - ct++; - } - } - break; - case 3: - ct = 0; - for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) { - for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]); - *ptr = karpathy_weights[ct]; - ct++; - } - } - } - break; + int size = 1; + for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) { + size *= gg_weights->ne[dim]; + } + for (int ct = 0; ct < size; ++ct) { + int64_t i0 = 0; int64_t i1 = 0; + int64_t i2 = 0; int64_t i3 = 0; + ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3); + ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]); } } @@ -679,16 +635,18 @@ static void save_as_llama_model( // convert AK weights into GG weights one by one. // w->token_embedding_table -> model->tok_embeddings // float* -> struct ggml_tensor - convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table); - convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table); + convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data()); + convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data()); - convert_weights_ak_to_gg(model->norm, w->rms_final_weight); + convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data()); //print_row(model->norm, 0); // for rms-att-weight int row_length = model->hparams.n_embd; int n_ff = model->hparams.n_ff; + const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv; + for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ auto & layer = model->layers[i]; // 1d @@ -697,9 +655,10 @@ static void save_as_llama_model( // from 3d matrix layer x dim x dim to 2d matrix dim x dim convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]); - convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]); - convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]); convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]); + // from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries + convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]); + convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]); convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]); convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]); @@ -736,8 +695,8 @@ static void save_as_llama_model( gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd); gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff); gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); - // n_head_kv is optional, default to n_head - // gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...); + gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); + gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv); gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer); gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot); gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f); @@ -789,12 +748,12 @@ static void save_as_llama_model( static struct train_params get_default_train_params() { struct train_params params; - params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; + params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; params.fn_llama2c_output_model = "ak_llama_model.bin"; - params.fn_train_data = "shakespeare.txt"; - params.fn_checkpoint_in = "checkpoint.bin"; - params.fn_checkpoint_out = "checkpoint.bin"; - params.fn_model_out = "ggml-checkpoint-f32.bin"; + params.fn_train_data = "shakespeare.txt"; + params.fn_checkpoint_in = "checkpoint.bin"; + params.fn_checkpoint_out = "checkpoint.bin"; + params.fn_model_out = "ggml-checkpoint-f32.bin"; params.seed = -1; @@ -829,8 +788,8 @@ static struct train_params get_default_train_params() { params.adam_alpha = 1e-3f; params.adam_decay = 1e-3f; - params.mem_model_gb = 2; - params.mem_compute_gb = 24; + params.mem_model_gb = 2; + params.mem_compute_gb = 24; params.mem_compute0_gb = 8; params.mem_compute1_gb = 2; @@ -916,19 +875,30 @@ int main(int argc, char ** argv) { if (!params_parse(argc, argv, ¶ms)) { return 1; } + log_set_target(stdout); Config config; TransformerWeights weights = {}; { - FILE *file = fopen(params.fn_llama2c_model, "rb"); - if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; } + LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model); + FILE *file = fopen(params.fn_llama2c_model, "r"); + if (!file) { + LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model); + return 1; + } // read in the config header - if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } + if (fread(&config, sizeof(Config), 1, file) != 1) { + LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model); + return 1; + } auto shared_weights = config.vocab_size > 0; config.vocab_size = abs(config.vocab_size); // read in the Transformer weights - malloc_weights(&weights, &config, shared_weights); - if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; } + alloc_weights(&weights, &config, shared_weights); + if (checkpoint_init_weights(&weights, &config, file, shared_weights)) { + LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model); + return 1; + } fclose(file); } @@ -936,15 +906,18 @@ int main(int argc, char ** argv) { load_vocab(params.fn_vocab_model, &config, &vocab); struct my_llama_model model; - model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); - model.hparams.n_ctx = params.n_ctx; - model.hparams.n_embd = config.dim; //params.n_embd; - model.hparams.n_ff = config.hidden_dim; - model.hparams.n_mult = 32;//params.n_mult; - model.hparams.n_head = config.n_heads; //params.n_head; - model.hparams.n_layer = config.n_layers; //params.n_layer; - model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); + model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); + model.hparams.n_ctx = params.n_ctx; + model.hparams.n_embd = config.dim; //params.n_embd; + model.hparams.n_ff = config.hidden_dim; + model.hparams.n_mult = 32;//params.n_mult; + model.hparams.n_head = config.n_heads; //params.n_head; + model.hparams.n_head_kv = config.n_kv_heads; + model.hparams.n_layer = config.n_layers; //params.n_layer; + model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); + print_params(&model.hparams); + struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; @@ -956,7 +929,7 @@ int main(int argc, char ** argv) { model.name = basename(params.fn_llama2c_model); save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); - printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model); + LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model); ggml_free(model.ctx); return 0;