mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-31 22:04:35 +00:00
Merge branch 'gguf-write-tokenization' into gguf
This commit is contained in:
commit
9475cdb7a3
32
gguf.py
32
gguf.py
@ -15,7 +15,7 @@ import numpy as np
|
|||||||
class GGMLQuantizationType(IntEnum):
|
class GGMLQuantizationType(IntEnum):
|
||||||
F32 = 0
|
F32 = 0
|
||||||
F16 = 1
|
F16 = 1
|
||||||
QR_0 = 2
|
Q4_0 = 2
|
||||||
Q4_1 = 3
|
Q4_1 = 3
|
||||||
# Q4_2 = 4 # support has been removed
|
# Q4_2 = 4 # support has been removed
|
||||||
# Q4_3 = 5 # support has been removed
|
# Q4_3 = 5 # support has been removed
|
||||||
@ -75,7 +75,9 @@ class GGUFWriter:
|
|||||||
return cls(f)
|
return cls(f)
|
||||||
|
|
||||||
def write_key(self, key: str):
|
def write_key(self, key: str):
|
||||||
self.write_val(key, GGUFValueType.STRING)
|
encoded_key = key.encode("utf8")
|
||||||
|
self.fout.write(struct.pack("<I", len(encoded_key)))
|
||||||
|
self.fout.write(encoded_key)
|
||||||
|
|
||||||
def write_uint8(self, key: str, val: int):
|
def write_uint8(self, key: str, val: int):
|
||||||
self.write_key(key)
|
self.write_key(key)
|
||||||
@ -158,28 +160,34 @@ class GGUFWriter:
|
|||||||
return ((x + n - 1) // n) * n
|
return ((x + n - 1) // n) * n
|
||||||
|
|
||||||
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
||||||
self.write_val(name, GGUFValueType.STRING)
|
self.write_key(name)
|
||||||
n_dims = len(tensor.shape)
|
n_dims = len(tensor.shape)
|
||||||
self.write_val(n_dims, GGUFValueType.INT32)
|
self.fout.write(struct.pack("<i", n_dims))
|
||||||
for i in range(n_dims):
|
for i in range(n_dims):
|
||||||
self.write_val(tensor.shape[n_dims - 1 - i], GGUFValueType.INT32)
|
self.fout.write(struct.pack("<i", tensor.shape[n_dims - 1 - i]))
|
||||||
|
|
||||||
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
||||||
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
||||||
self.write_val(dtype, GGUFValueType.INT32)
|
self.fout.write(struct.pack("<i", dtype))
|
||||||
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
||||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
||||||
|
|
||||||
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
self.flush()
|
||||||
pad = offset_data - self.fout.tell()
|
|
||||||
self.fout.write(bytes([0] * pad))
|
|
||||||
|
|
||||||
self.tensors.append(tensor)
|
self.tensors.append(tensor)
|
||||||
|
|
||||||
def write_tensors(self):
|
def write_tensors(self):
|
||||||
|
offset_data = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT)
|
||||||
|
pad = offset_data - self.fout.tell()
|
||||||
|
print(f"pad: {pad}")
|
||||||
|
if pad != 0:
|
||||||
|
self.fout.write(bytes([0] * pad))
|
||||||
|
|
||||||
for tensor in self.tensors:
|
for tensor in self.tensors:
|
||||||
tensor.tofile(self.fout)
|
tensor.tofile(self.fout)
|
||||||
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
||||||
|
print(f"pad: {pad}")
|
||||||
|
if pad != 0:
|
||||||
self.fout.write(bytes([0] * pad))
|
self.fout.write(bytes([0] * pad))
|
||||||
|
|
||||||
def flush(self):
|
def flush(self):
|
||||||
@ -274,10 +282,10 @@ if __name__ == "__main__":
|
|||||||
gguf_writer.write_architecture("llama")
|
gguf_writer.write_architecture("llama")
|
||||||
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
||||||
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
||||||
tensor1 = np.random.random(size=(7, 10)).astype(np.float32)
|
tensor1 = np.ones((7, 8, 3), dtype=np.float32)
|
||||||
tensor2 = np.random.random(size=(16, 12)).astype(np.float16)
|
tensor2 = np.ones((7, 8, 3), dtype=np.float32)
|
||||||
gguf_writer.write_tensor_info("tensor1", tensor1)
|
gguf_writer.write_tensor_info("tensor1", tensor1)
|
||||||
gguf_writer.write_tensor_info("tensor2", tensor2)
|
gguf_writer.write_tensor_info("tensor2", tensor2)
|
||||||
gguf_writer.write_tensors()
|
gguf_writer.write_tensors()
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
Loading…
Reference in New Issue
Block a user