finetune : zero the loraB initial vectors (#4082)

* finetune : zero the loraB initial vectors

Without this, the first iteration is starting out far from the base model, instead of exactly on it.
Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs
(though it departs from the paper in using a different distribution for the other vector, in some cases).

* tabs to spaces

* Use ggml_set_zero instead of adding a new function
This commit is contained in:
Andrew Godfrey 2023-11-17 02:23:11 -08:00 committed by GitHub
parent b83e149ec6
commit 947f64f163
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd); randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd); ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd); randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd); ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd); randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd); ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) { for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i]; auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd); randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd); ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd); randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd); ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd); randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd); ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd); randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd); ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd); randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd); ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd); randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd); ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd); randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd); ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd); randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd); ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd); randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd); ggml_set_zero(layer.w3_b);
} }
free_random_normal_distribution(rnd); free_random_normal_distribution(rnd);