mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-11 21:39:52 +00:00
AVX implementations (#1370)
This commit is contained in:
parent
d155f0f865
commit
948d124837
16
SHA256SUMS
16
SHA256SUMS
@ -1,24 +1,19 @@
|
||||
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
||||
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
||||
99aeb35f26b577fa2732716cca4d8b5ada39a78ea9b2dca2651fc632b5d101b6 models/7B/ggml-model-q4_0.bin
|
||||
cc061458339a3eb8bcecbf0a825e9924fb7d1a8150f63cd5d091caa99215aafe models/7B/ggml-model-q4_1.bin
|
||||
25b050337a87344da687a7f2adddc03bd99b7f6c140450e836649f3585fb6496 models/7B/ggml-model-q4_2.bin
|
||||
ae89af479ab4d31c4e555ad8cc1dc9bf1f68d617186158cc381cd5a0fccd10bd models/7B/ggml-model-q4_0.bin
|
||||
862072e2036a1bdb1a01ec2e159381f332a9e2357b886031c075fb7efa86db9b models/7B/ggml-model-q4_1.bin
|
||||
0bef7cefa880a67a0b6d2a7e4559ded235823535ad616808dd8b5e47ff0a202f models/7B/ggml-model-q5_0.bin
|
||||
97b9c38b2b8aed0c0aa90e0a975570ce3455c47d62128b382c55acbf6e2035f6 models/7B/ggml-model-q5_1.bin
|
||||
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
|
||||
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
||||
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
||||
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
||||
eecb575d325d935157761172e2bf05984dad216eb2b06777b73463cf9b818bab models/13B/ggml-model-q4_0.bin
|
||||
d9581b5b88e5622532fe897c9f9b0e67a317d22dd27a6f90fa4ab8c6d23ccdbb models/13B/ggml-model-q4_1.bin
|
||||
75a218a47df03f5f96354656329864613abcb67779412b9bc2282b28c1c3cbaa models/13B/ggml-model-q4_2.bin
|
||||
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
|
||||
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
|
||||
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
|
||||
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
||||
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
||||
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
||||
517b9e525742c42b5478a6280a4b41ec66f46298c57aba7f0453d491682fe42d models/30B/ggml-model-q4_0.bin
|
||||
7b75ac615fa369ee593493a7e6ef87542bf0350255db928b22c5a24f6d598bcd models/30B/ggml-model-q4_1.bin
|
||||
aadbc9cf806313a55be570f62884eed289d30c313fac3b7838717e01bd553204 models/30B/ggml-model-q4_2.bin
|
||||
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
|
||||
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
|
||||
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
|
||||
@ -29,8 +24,5 @@ a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/con
|
||||
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
||||
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
||||
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
||||
01672072136f8be6ca9d7cebe5f86ed316e8b85851b9fe3de951809233cea4f2 models/65B/ggml-model-q4_0.bin
|
||||
4743a28aac3e5f32a6e838a815f51d3779de44fbbe251d745251e66c23c5950f models/65B/ggml-model-q4_1.bin
|
||||
1b6f6588d0e2ecfe6c4d849088e48e5e3083466b962daa32e3261363e21fc5e9 models/65B/ggml-model-q4_2.bin
|
||||
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
|
||||
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model
|
||||
|
82
ggml.c
82
ggml.c
@ -472,23 +472,16 @@ static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
|
||||
//
|
||||
|
||||
#if __AVX__ || __AVX2__ || __AVX512F__
|
||||
// Unpack 16 4-bit fields into 16 bytes
|
||||
// The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
|
||||
static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
|
||||
{
|
||||
// Load 8 bytes from memory
|
||||
__m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
|
||||
|
||||
// Expand bytes into uint16_t values
|
||||
__m128i bytes = _mm_cvtepu8_epi16( tmp );
|
||||
|
||||
// Unpack values into individual bytes
|
||||
const __m128i lowMask = _mm_set1_epi8( 0xF );
|
||||
__m128i high = _mm_andnot_si128( lowMask, bytes );
|
||||
__m128i low = _mm_and_si128( lowMask, bytes );
|
||||
high = _mm_slli_epi16( high, 4 );
|
||||
bytes = _mm_or_si128( low, high );
|
||||
return bytes;
|
||||
// multiply int8_t, add results pairwise twice
|
||||
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
|
||||
// Get absolute values of x vectors
|
||||
const __m128i ax = _mm_sign_epi8(x, x);
|
||||
// Sign the values of the y vectors
|
||||
const __m128i sy = _mm_sign_epi8(y, x);
|
||||
// Perform multiplication and create 16-bit values
|
||||
const __m128i dot = _mm_maddubs_epi16(ax, sy);
|
||||
const __m128i ones = _mm_set1_epi16(1);
|
||||
return _mm_madd_epi16(ones, dot);
|
||||
}
|
||||
|
||||
// horizontally add 8 floats
|
||||
@ -535,19 +528,10 @@ static inline __m256i bytes_from_bits_32(const uint8_t * x) {
|
||||
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
|
||||
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
|
||||
{
|
||||
// Load 16 bytes from memory
|
||||
__m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
|
||||
|
||||
// Expand bytes into uint16_t values
|
||||
__m256i bytes = _mm256_cvtepu8_epi16( tmp );
|
||||
|
||||
// Unpack values into individual bytes
|
||||
const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
|
||||
const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
|
||||
const __m256i lowMask = _mm256_set1_epi8( 0xF );
|
||||
__m256i high = _mm256_andnot_si256( lowMask, bytes );
|
||||
__m256i low = _mm256_and_si256( lowMask, bytes );
|
||||
high = _mm256_slli_epi16( high, 4 );
|
||||
bytes = _mm256_or_si256( low, high );
|
||||
return bytes;
|
||||
return _mm256_and_si256(lowMask, bytes);
|
||||
}
|
||||
|
||||
// add int16_t pairwise and return as float vector
|
||||
@ -2146,31 +2130,23 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Compute combined scale for the block
|
||||
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
|
||||
|
||||
__m128i i32[2];
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
// Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
|
||||
__m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
|
||||
__m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
|
||||
const __m128i lowMask = _mm_set1_epi8(0xF);
|
||||
const __m128i off = _mm_set1_epi8(8);
|
||||
|
||||
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
|
||||
const __m128i off = _mm_set1_epi8( 8 );
|
||||
bx = _mm_sub_epi8( bx, off );
|
||||
const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
|
||||
|
||||
// Get absolute values of x vectors
|
||||
const __m128i ax = _mm_sign_epi8(bx, bx);
|
||||
__m128i bx = _mm_and_si128(lowMask, tmp);
|
||||
__m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
|
||||
bx = _mm_sub_epi8(bx, off);
|
||||
const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
|
||||
|
||||
// Sign the values of the y vectors
|
||||
const __m128i sy = _mm_sign_epi8(by, bx);
|
||||
|
||||
// Perform multiplication and create 16-bit values
|
||||
const __m128i dot = _mm_maddubs_epi16(ax, sy);
|
||||
|
||||
const __m128i ones = _mm_set1_epi16(1);
|
||||
i32[j] = _mm_madd_epi16(ones, dot);
|
||||
}
|
||||
bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
|
||||
by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
|
||||
bx = _mm_sub_epi8(bx, off);
|
||||
const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
|
||||
|
||||
// Convert int32_t to float
|
||||
__m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
|
||||
__m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
|
||||
// Apply the scale, and accumulate
|
||||
acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
|
||||
}
|
||||
@ -2484,8 +2460,8 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
|
||||
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
|
||||
@ -2673,8 +2649,8 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
|
||||
|
Loading…
Reference in New Issue
Block a user