metal : pad n_ctx by 32 (#6177)

* metal : require ne00 >= 128 for mat-mat kernels

ggml-ci

* llama : pad n_ctx by 32

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-03-22 09:36:03 +02:00 committed by GitHub
parent 59c17f02de
commit 95d576b48e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 14 additions and 2 deletions

View File

@ -101,7 +101,7 @@ int32_t get_num_physical_cores() {
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
} }
void process_escapes(std::string& input) { void process_escapes(std::string & input) {
std::size_t input_len = input.length(); std::size_t input_len = input.length();
std::size_t output_idx = 0; std::size_t output_idx = 0;

View File

@ -48,6 +48,8 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
} }
process_escapes(params.prompt);
// init LLM // init LLM
llama_backend_init(); llama_backend_init();
@ -78,7 +80,7 @@ int main(int argc, char ** argv) {
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234; ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req; ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel); ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel; ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads; ctx_params.n_threads = params.n_threads;

View File

@ -13044,6 +13044,9 @@ struct llama_context * llama_new_context_with_model(
cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
// this is necessary due to kv_self.n being padded later during inference
cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
// with causal attention, the batch size is limited by the context size // with causal attention, the batch size is limited by the context size
cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);

View File

@ -2091,6 +2091,13 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
} }
} }
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
for (ggml_type type_a : all_types) { for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
for (int n_mats : {2, 4, 8}) { for (int n_mats : {2, 4, 8}) {