mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
llama : adapter
ggml-ci
This commit is contained in:
parent
0969970a48
commit
963fb4d26f
@ -481,7 +481,17 @@ std::string fs_get_cache_file(const std::string & filename);
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
|
||||
~common_init_result() {
|
||||
llama_free(context);
|
||||
llama_free_model(model);
|
||||
|
||||
for (auto & lora_adapter : lora_adapters) {
|
||||
llama_lora_adapter_free(lora_adapter.adapter);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
@ -417,6 +417,7 @@ extern "C" {
|
||||
const char * path_model,
|
||||
struct llama_model_params params);
|
||||
|
||||
// TODO: rename to llama_model_free
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
// TODO: rename to llama_init_from_model
|
||||
@ -507,7 +508,6 @@ extern "C" {
|
||||
//
|
||||
|
||||
// Load a LoRA adapter from file
|
||||
// The loaded adapter will be associated to the given model, and will be free when the model is deleted
|
||||
// TODO: rename to llama_adapter_lora_init
|
||||
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
|
||||
struct llama_model * model,
|
||||
@ -530,8 +530,7 @@ extern "C" {
|
||||
|
||||
// Remove all LoRA adapters from given context
|
||||
// TODO: rename to llama_clear_adapter_lora
|
||||
LLAMA_API void llama_lora_adapter_clear(
|
||||
struct llama_context * ctx);
|
||||
LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
|
||||
|
||||
// Manually free a LoRA adapter
|
||||
// Note: loaded adapters will be free when the associated model is deleted
|
||||
|
@ -1,5 +1,318 @@
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
GGML_ASSERT(cvec.tensors.empty());
|
||||
GGML_ASSERT(cvec.ctxs.empty());
|
||||
GGML_ASSERT(cvec.bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
cvec.ctxs.emplace_back(ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// make tensors
|
||||
cvec.tensors.reserve(hparams.n_layer);
|
||||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
||||
cvec.tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
cvec.bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
cvec.bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
cvec.layer_start = -1;
|
||||
cvec.layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (n_embd != (int) hparams.n_embd) {
|
||||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (cvec.tensors.empty()) {
|
||||
if (!llama_control_vector_init(cvec, model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
cvec.layer_start = il_start;
|
||||
cvec.layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
assert(cvec.tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// lora
|
||||
|
||||
llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
if (pos != ab_map.end()) {
|
||||
return &pos->second;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
/* .ctx = */ &ctx_init,
|
||||
};
|
||||
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
||||
}
|
||||
|
||||
ggml_context_ptr ctx { ctx_init };
|
||||
|
||||
// check metadata
|
||||
{
|
||||
auto get_kv_str = [&](const std::string & key) -> std::string {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
|
||||
};
|
||||
auto get_kv_f32 = [&](const std::string & key) -> float {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
|
||||
};
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
}
|
||||
|
||||
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
auto general_arch = llm_arch_from_string(general_arch_str);
|
||||
if (general_arch != model.arch) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
|
||||
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
||||
if (adapter_type != "lora") {
|
||||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||||
}
|
||||
|
||||
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
||||
|
||||
// contexts for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
// add a new context
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * buft_ctx = ggml_init(params);
|
||||
if (!buft_ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = buft_ctx;
|
||||
adapter.ctxs.emplace_back(buft_ctx);
|
||||
return buft_ctx;
|
||||
};
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
|
||||
std::string name(cur->name);
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
}
|
||||
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
{
|
||||
adapter.ctxs.reserve(ctx_map.size());
|
||||
adapter.bufs.reserve(ctx_map.size());
|
||||
for (auto & it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx_dev = it.second;
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
|
||||
adapter.bufs.emplace_back(std::move(buf));
|
||||
}
|
||||
}
|
||||
|
||||
// set tensor data
|
||||
{
|
||||
llama_file gguf_file(path_lora, "rb");
|
||||
std::vector<uint8_t> read_buf;
|
||||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||||
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
||||
size_t size = ggml_nbytes(orig);
|
||||
read_buf.resize(size);
|
||||
gguf_file.seek(offs, SEEK_SET);
|
||||
gguf_file.read_raw(read_buf.data(), size);
|
||||
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
||||
};
|
||||
for (auto & it : adapter.ab_map) {
|
||||
auto orig = ab_map[it.first];
|
||||
auto dev = it.second;
|
||||
set_tensor(orig.a, dev.a);
|
||||
set_tensor(orig.b, dev.b);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
@ -1,13 +1,11 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-hparams.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include "llama-model.h" // TODO: need only hparams
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
//
|
||||
@ -16,119 +14,27 @@
|
||||
|
||||
// TODO: rename to llama_adapter_vec
|
||||
struct llama_control_vector {
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
struct ggml_tensor * tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
return tensors[il];
|
||||
}
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
};
|
||||
|
||||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||||
GGML_ASSERT(cvec.tensors.empty());
|
||||
GGML_ASSERT(cvec.ctxs.empty());
|
||||
GGML_ASSERT(cvec.bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ model.hparams.n_layer*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = ctx;
|
||||
cvec.ctxs.emplace_back(ctx);
|
||||
return ctx;
|
||||
}
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// make tensors
|
||||
cvec.tensors.reserve(model.hparams.n_layer);
|
||||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||||
cvec.tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
cvec.bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
cvec.bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int32_t llama_control_vector_apply(struct llama_control_vector & cvec, const llama_model & model, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
cvec.layer_start = -1;
|
||||
cvec.layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (n_embd != (int) model.hparams.n_embd) {
|
||||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (cvec.tensors.empty()) {
|
||||
if (!llama_control_vector_init(cvec, model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
cvec.layer_start = il_start;
|
||||
cvec.layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
||||
assert(cvec.tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
int32_t llama_control_vector_apply(
|
||||
struct llama_control_vector & cvec,
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
//
|
||||
// llama_adapter_lora
|
||||
@ -138,214 +44,25 @@ static int32_t llama_control_vector_apply(struct llama_control_vector & cvec, co
|
||||
struct llama_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
llama_lora_weight() = default;
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {}
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
// TODO: rename to llama_adapter_lora
|
||||
struct llama_lora_adapter {
|
||||
struct llama_model * base_model;
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
float alpha;
|
||||
|
||||
llama_lora_adapter(struct llama_model * base_model): base_model(base_model) {
|
||||
base_model->lora_adapters.insert(this);
|
||||
}
|
||||
llama_lora_adapter() = default;
|
||||
~llama_lora_adapter() = default;
|
||||
|
||||
llama_lora_weight * get_weight(struct ggml_tensor * w) {
|
||||
std::string name(w->name);
|
||||
auto pos = ab_map.find(name);
|
||||
if (ab_map.find(name) != ab_map.end()) {
|
||||
return &pos->second;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
~llama_lora_adapter() {
|
||||
auto pos = base_model->lora_adapters.find(this);
|
||||
if (pos != base_model->lora_adapters.end()) {
|
||||
base_model->lora_adapters.erase(pos);
|
||||
}
|
||||
}
|
||||
llama_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
};
|
||||
|
||||
static struct ggml_tensor * llama_get_model_tensor(const struct llama_model * model, const char * name) {
|
||||
auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
|
||||
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
|
||||
return it.first == name;
|
||||
});
|
||||
if (it == model->tensors_by_name.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
/* .ctx = */ &ctx_init,
|
||||
};
|
||||
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
||||
}
|
||||
|
||||
ggml_context_ptr ctx { ctx_init };
|
||||
|
||||
// check metadata
|
||||
{
|
||||
auto get_kv_str = [&](const std::string & key) -> std::string {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
|
||||
};
|
||||
auto get_kv_f32 = [&](const std::string & key) -> float {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
|
||||
};
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
}
|
||||
|
||||
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
auto general_arch = llm_arch_from_string(general_arch_str);
|
||||
if (general_arch != model->arch) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
|
||||
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
||||
if (adapter_type != "lora") {
|
||||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||||
}
|
||||
|
||||
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
||||
|
||||
// contexts for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
// add a new context
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * buft_ctx = ggml_init(params);
|
||||
if (!buft_ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = buft_ctx;
|
||||
adapter.ctxs.emplace_back(buft_ctx);
|
||||
return buft_ctx;
|
||||
};
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
|
||||
std::string name(cur->name);
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
}
|
||||
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_get_model_tensor(model, name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||||
}
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
{
|
||||
adapter.ctxs.reserve(ctx_map.size());
|
||||
adapter.bufs.reserve(ctx_map.size());
|
||||
for (auto & it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx_dev = it.second;
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
|
||||
adapter.bufs.emplace_back(std::move(buf));
|
||||
}
|
||||
}
|
||||
|
||||
// set tensor data
|
||||
{
|
||||
llama_file gguf_file(path_lora, "rb");
|
||||
std::vector<uint8_t> read_buf;
|
||||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||||
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
||||
size_t size = ggml_nbytes(orig);
|
||||
read_buf.resize(size);
|
||||
gguf_file.seek(offs, SEEK_SET);
|
||||
gguf_file.read_raw(read_buf.data(), size);
|
||||
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
||||
};
|
||||
for (auto & it : adapter.ab_map) {
|
||||
auto orig = ab_map[it.first];
|
||||
auto dev = it.second;
|
||||
set_tensor(orig.a, dev.a);
|
||||
set_tensor(orig.b, dev.b);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter);
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
|
||||
const char * llm_type_name(llm_type type) {
|
||||
@ -172,3 +173,15 @@ ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, in
|
||||
return ggml_add(ctx, cur, layer_dir);
|
||||
});
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name) {
|
||||
auto it = std::find_if(model.tensors_by_name.begin(), model.tensors_by_name.end(),
|
||||
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
|
||||
return it.first == name;
|
||||
});
|
||||
if (it == model.tensors_by_name.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
}
|
||||
|
@ -363,15 +363,6 @@ struct llama_model {
|
||||
|
||||
// total size of all the tensors in the model in bytes
|
||||
size_t n_bytes = 0;
|
||||
|
||||
// keep track of loaded lora adapters
|
||||
std::set<struct llama_lora_adapter *> lora_adapters;
|
||||
|
||||
~llama_model() {
|
||||
while (!lora_adapters.empty()) {
|
||||
llama_lora_adapter_free(*lora_adapters.begin());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const char * llm_type_name(llm_type type);
|
||||
@ -380,5 +371,9 @@ std::string llama_model_arch_name (const llama_model & model);
|
||||
std::string llama_model_type_name (const llama_model & model);
|
||||
std::string llama_model_ftype_name(const llama_model & model);
|
||||
|
||||
// TODO: this probably belongs to llama-adapter
|
||||
// used by llama_adapter_vec
|
||||
ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
|
||||
|
||||
// used by llama_adapter_lora
|
||||
struct ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
|
||||
|
||||
|
@ -15670,6 +15670,21 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_lora_adapter * adapter = new llama_lora_adapter();
|
||||
|
||||
try {
|
||||
llama_lora_adapter_init_impl(*model, path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
int32_t llama_lora_adapter_set(
|
||||
struct llama_context * ctx,
|
||||
struct llama_lora_adapter * adapter,
|
||||
@ -15678,7 +15693,9 @@ int32_t llama_lora_adapter_set(
|
||||
LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
|
||||
ctx->lora_adapters[adapter] = scale;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -15690,6 +15707,7 @@ int32_t llama_lora_adapter_remove(
|
||||
ctx->lora_adapters.erase(pos);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
@ -16560,17 +16578,6 @@ uint32_t llama_model_quantize(
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
||||
try {
|
||||
struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
|
||||
llama_lora_adapter_init_internal(model, path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
|
||||
struct llama_kv_cache_view result = {
|
||||
/*.n_cells = */ 0,
|
||||
|
Loading…
Reference in New Issue
Block a user