mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
server: tests: passkey challenge / self-extend with context shift demo (#5832)
* server: tests: add models endpoint scenario * server: /v1/models add some metadata * server: tests: add debug field in context before scenario * server: tests: download model from HF, add batch size * server: tests: add passkey test * server: tests: add group attention params * server: do not truncate prompt tokens if self-extend through group attention is enabled * server: logs: do not truncate log values * server: tests - passkey - first good working value of nga * server: tests: fix server timeout * server: tests: fix passkey, add doc, fix regex content matching, fix timeout * server: tests: fix regex content matching * server: tests: schedule slow tests on master * server: metrics: fix when no prompt processed * server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1 * server: tests: increase timeout for completion * server: tests: keep only the PHI-2 test * server: tests: passkey add a negative test
This commit is contained in:
parent
4a6e2d6142
commit
9731134296
17
.github/workflows/server.yml
vendored
17
.github/workflows/server.yml
vendored
@ -10,6 +10,8 @@ on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
schedule:
|
||||
- cron: '00 0 * * *'
|
||||
|
||||
jobs:
|
||||
server:
|
||||
@ -70,14 +72,15 @@ jobs:
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Download models
|
||||
id: download_models
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_test
|
||||
id: server_integration_tests
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: github.event.schedule != ''
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
||||
|
@ -441,8 +441,8 @@ struct llama_server_context
|
||||
const int ga_w = params.grp_attn_w;
|
||||
|
||||
if (ga_n != 1) {
|
||||
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
|
||||
@ -1709,8 +1709,8 @@ struct llama_server_context
|
||||
}
|
||||
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate it
|
||||
if (slot.n_prompt_tokens >= slot.n_ctx)
|
||||
// if input prompt is too big, truncate it, if group attention self-extend is disabled
|
||||
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
|
||||
{
|
||||
const int n_left = slot.n_ctx - slot.params.n_keep;
|
||||
const int n_block_size = n_left / 2;
|
||||
@ -1785,9 +1785,11 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
LOG_INFO("slot progression", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "n_past_se", slot.n_past_se },
|
||||
{ "ga_i", slot.ga_i },
|
||||
{ "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
@ -2001,6 +2003,17 @@ struct llama_server_context
|
||||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
|
||||
json model_meta() {
|
||||
return json{
|
||||
{"vocab_type", llama_vocab_type(model)},
|
||||
{"n_vocab", llama_n_vocab(model)},
|
||||
{"n_ctx_train", llama_n_ctx_train(model)},
|
||||
{"n_embd", llama_n_embd(model)},
|
||||
{"n_params", llama_model_n_params(model)},
|
||||
{"size", llama_model_size(model)},
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
@ -2911,9 +2924,10 @@ int main(int argc, char **argv)
|
||||
for (const auto& metric_def : metrics_def) {
|
||||
std::string name = metric_def["name"];
|
||||
std::string help = metric_def["help"];
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
|
||||
auto value = json_value(metric_def, "value", 0);
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||
<< "llamacpp:" << name << " " << value << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
@ -2994,6 +3008,7 @@ int main(int argc, char **argv)
|
||||
state.store(SERVER_STATE_READY);
|
||||
LOG_INFO("model loaded", {});
|
||||
}
|
||||
const auto model_meta = llama.model_meta();
|
||||
|
||||
if (sparams.chat_template.empty()) { // custom chat template is not supplied
|
||||
// check if the template comes with the model is supported by us
|
||||
@ -3143,7 +3158,7 @@ int main(int argc, char **argv)
|
||||
}
|
||||
});
|
||||
|
||||
svr.Get("/v1/models", [¶ms](const httplib::Request& req, httplib::Response& res)
|
||||
svr.Get("/v1/models", [¶ms, &model_meta](const httplib::Request& req, httplib::Response& res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
std::time_t t = std::time(0);
|
||||
@ -3152,10 +3167,11 @@ int main(int argc, char **argv)
|
||||
{"object", "list"},
|
||||
{"data", {
|
||||
{
|
||||
{"id", params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", t},
|
||||
{"owned_by", "llamacpp"}
|
||||
{"id", params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", t},
|
||||
{"owned_by", "llamacpp"},
|
||||
{"meta", model_meta}
|
||||
},
|
||||
}}
|
||||
};
|
||||
|
@ -1,22 +1,30 @@
|
||||
# Server tests
|
||||
|
||||
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
|
||||
* [issues.feature](./features/issues.feature) Pending issues scenario
|
||||
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
|
||||
* [security.feature](./features/security.feature) Security, CORS and API Key
|
||||
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
|
||||
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development)
|
||||
and [behave](https://behave.readthedocs.io/en/latest/):
|
||||
|
||||
* [issues.feature](./features/issues.feature) Pending issues scenario
|
||||
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
|
||||
* [security.feature](./features/security.feature) Security, CORS and API Key
|
||||
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
|
||||
|
||||
Tests target GitHub workflows job runners with 4 vCPU.
|
||||
|
||||
Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
|
||||
Requests are
|
||||
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
|
||||
based http client.
|
||||
|
||||
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
|
||||
To mitigate it, you can increase values in `n_predict`, `kv_size`.
|
||||
|
||||
### Install dependencies
|
||||
|
||||
`pip install -r requirements.txt`
|
||||
|
||||
### Run tests
|
||||
|
||||
1. Build the server
|
||||
|
||||
```shell
|
||||
cd ../../..
|
||||
mkdir build
|
||||
@ -24,24 +32,36 @@ cd build
|
||||
cmake ../
|
||||
cmake --build . --target server
|
||||
```
|
||||
2. download required models:
|
||||
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
|
||||
3. Start the test: `./tests.sh`
|
||||
|
||||
2. Start the test: `./tests.sh`
|
||||
|
||||
It's possible to override some scenario steps values with environment variables:
|
||||
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
|
||||
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
|
||||
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
|
||||
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
|
||||
|
||||
| variable | description |
|
||||
|--------------------------|------------------------------------------------------------------------------------------------|
|
||||
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
|
||||
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` |
|
||||
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
|
||||
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
|
||||
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
||||
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
|
||||
|
||||
- `@bug` annotation aims to link a scenario with a GitHub issue.
|
||||
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
|
||||
- `@wip` to focus on a scenario working in progress
|
||||
- `@slow` heavy test, disabled by default
|
||||
|
||||
To run a scenario annotated with `@bug`, start:
|
||||
`DEBUG=ON ./tests.sh --no-skipped --tags bug`
|
||||
|
||||
```shell
|
||||
DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
```
|
||||
|
||||
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
|
||||
|
||||
```shell
|
||||
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"
|
||||
```
|
||||
|
@ -7,7 +7,10 @@ from signal import SIGKILL
|
||||
|
||||
|
||||
def before_scenario(context, scenario):
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
|
||||
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
|
||||
if context.debug:
|
||||
print("DEBUG=ON\n")
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
|
||||
port = 8080
|
||||
if 'PORT' in os.environ:
|
||||
port = int(os.environ['PORT'])
|
||||
|
@ -1,4 +1,5 @@
|
||||
# List of ongoing issues
|
||||
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
@bug
|
||||
Feature: Issues
|
||||
# No confirmed issue at the moment
|
||||
|
@ -1,11 +1,12 @@
|
||||
@llama.cpp
|
||||
@parallel
|
||||
Feature: Parallel
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model alias tinyllama-2
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And 42 as server seed
|
||||
And 512 as batch size
|
||||
And 64 KV cache size
|
||||
And 2 slots
|
||||
And embeddings extraction
|
||||
|
55
examples/server/tests/features/passkey.feature
Normal file
55
examples/server/tests/features/passkey.feature
Normal file
@ -0,0 +1,55 @@
|
||||
# run with: ./tests.sh --no-skipped --tags passkey
|
||||
@passkey
|
||||
@slow
|
||||
Feature: Passkey / Self-extend with context shift
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
|
||||
# Generates a long text of junk and inserts a secret passkey number inside it.
|
||||
# Then we query the LLM for the secret passkey.
|
||||
# see #3856 and #4810
|
||||
Scenario Outline: Passkey
|
||||
Given a model file <hf_file> from HF repo <hf_repo>
|
||||
And <n_batch> as batch size
|
||||
And <n_junk> as number of junk
|
||||
And <n_predicted> server max tokens to predict
|
||||
And 42 as seed
|
||||
And <n_ctx> KV cache size
|
||||
And 1 slots
|
||||
And <n_ga> group attention factor to extend context size through self-extend
|
||||
And <n_ga_w> group attention width to extend context size through self-extend
|
||||
# Can be override with N_GPU_LAYERS
|
||||
And <ngl> GPU offloaded layers
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given available models
|
||||
Then model 0 is trained on <n_ctx_train> tokens context
|
||||
Given a prefix prompt:
|
||||
"""
|
||||
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
|
||||
"""
|
||||
And a passkey prompt template:
|
||||
"""
|
||||
The pass key is <passkey> Remember it. <passkey> is the pass key.
|
||||
"""
|
||||
And a junk suffix prompt:
|
||||
"""
|
||||
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
|
||||
"""
|
||||
And a suffix prompt:
|
||||
"""
|
||||
What is the pass key? The pass key is
|
||||
"""
|
||||
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples:
|
||||
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
|
||||
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
|
||||
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
|
||||
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
|
||||
# 987 |
|
||||
|
@ -1,9 +1,10 @@
|
||||
@llama.cpp
|
||||
@security
|
||||
Feature: Security
|
||||
|
||||
Background: Server startup with an api key defined
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a server api key llama.cpp
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
@ -1,15 +1,17 @@
|
||||
@llama.cpp
|
||||
@server
|
||||
Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model alias tinyllama-2
|
||||
And 42 as server seed
|
||||
# KV Cache corresponds to the total amount of tokens
|
||||
# that can be stored across all independent sequences: #4130
|
||||
# see --ctx-size and #5568
|
||||
And 32 KV cache size
|
||||
And 512 as batch size
|
||||
And 1 slots
|
||||
And embeddings extraction
|
||||
And 32 server max tokens to predict
|
||||
@ -29,9 +31,9 @@ Feature: llama.cpp server
|
||||
And prometheus metrics are exposed
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park\|friends\|scared\|always)+ | 32 |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
@ -43,9 +45,9 @@ Feature: llama.cpp server
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
|
||||
| llama-2 | Book | What is the best book | 8 | (Mom<or>what)+ | 8 | disabled |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks<or>happy<or>bird)+ | 32 | enabled |
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
|
||||
| llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled |
|
||||
|
||||
Scenario: Embedding
|
||||
When embeddings are computed for:
|
||||
@ -75,10 +77,15 @@ Feature: llama.cpp server
|
||||
When an OAI compatible embeddings computation request for multiple inputs
|
||||
Then embeddings are generated
|
||||
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
"""
|
||||
What is the capital of France ?
|
||||
"""
|
||||
Then tokens can be detokenize
|
||||
|
||||
Scenario: Models available
|
||||
Given available models
|
||||
Then 1 models are supported
|
||||
Then model 0 is identified by tinyllama-2
|
||||
Then model 0 is trained on 128 tokens context
|
||||
|
@ -13,6 +13,7 @@ import aiohttp
|
||||
import openai
|
||||
from behave import step
|
||||
from behave.api.async_step import async_run_until_complete
|
||||
from huggingface_hub import hf_hub_download
|
||||
from prometheus_client import parser
|
||||
|
||||
|
||||
@ -26,17 +27,23 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
|
||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||
|
||||
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
|
||||
context.model_alias = None
|
||||
context.n_batch = None
|
||||
context.n_ctx = None
|
||||
context.n_ga = None
|
||||
context.n_ga_w = None
|
||||
context.n_gpu_layer = None
|
||||
context.n_predict = None
|
||||
context.n_server_predict = None
|
||||
context.n_slots = None
|
||||
context.prompt_prefix = None
|
||||
context.prompt_suffix = None
|
||||
context.server_api_key = None
|
||||
context.server_continuous_batching = False
|
||||
context.server_embeddings = False
|
||||
context.server_metrics = False
|
||||
context.server_process = None
|
||||
context.seed = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
|
||||
@ -45,9 +52,11 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
context.prompts = []
|
||||
|
||||
|
||||
@step(u'a model file {model_file}')
|
||||
def step_model_file(context, model_file):
|
||||
context.model_file = model_file
|
||||
@step(u'a model file {hf_file} from HF repo {hf_repo}')
|
||||
def step_download_hf_model(context, hf_file, hf_repo):
|
||||
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
|
||||
if context.debug:
|
||||
print(f"model file: {context.model_file}\n")
|
||||
|
||||
|
||||
@step(u'a model alias {model_alias}')
|
||||
@ -55,24 +64,34 @@ def step_model_alias(context, model_alias):
|
||||
context.model_alias = model_alias
|
||||
|
||||
|
||||
@step(u'{seed} as server seed')
|
||||
@step(u'{seed:d} as server seed')
|
||||
def step_seed(context, seed):
|
||||
context.server_seed = int(seed)
|
||||
context.server_seed = seed
|
||||
|
||||
|
||||
@step(u'{n_ctx} KV cache size')
|
||||
@step(u'{ngl:d} GPU offloaded layers')
|
||||
def step_n_gpu_layer(context, ngl):
|
||||
if 'N_GPU_LAYERS' in os.environ:
|
||||
new_ngl = int(os.environ['N_GPU_LAYERS'])
|
||||
if context.debug:
|
||||
print(f"-ngl upgraded from {ngl} to {new_ngl}")
|
||||
ngl = new_ngl
|
||||
context.n_gpu_layer = ngl
|
||||
|
||||
|
||||
@step(u'{n_ctx:d} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = int(n_ctx)
|
||||
context.n_ctx = n_ctx
|
||||
|
||||
|
||||
@step(u'{n_slots} slots')
|
||||
@step(u'{n_slots:d} slots')
|
||||
def step_n_slots(context, n_slots):
|
||||
context.n_slots = int(n_slots)
|
||||
context.n_slots = n_slots
|
||||
|
||||
|
||||
@step(u'{n_predict} server max tokens to predict')
|
||||
@step(u'{n_predict:d} server max tokens to predict')
|
||||
def step_server_n_predict(context, n_predict):
|
||||
context.n_server_predict = int(n_predict)
|
||||
context.n_server_predict = n_predict
|
||||
|
||||
|
||||
@step(u'continuous batching')
|
||||
@ -116,11 +135,13 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
|
||||
case 'ready' | 'idle':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
timeout=10,
|
||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0,
|
||||
expected_slots=[{'id': slot_id, 'state': 0}
|
||||
for slot_id in range(context.n_slots)])
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
case 'busy':
|
||||
await wait_for_health_status(context, context.base_url, 503,
|
||||
'no slot available',
|
||||
@ -128,7 +149,8 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
slots_idle=0,
|
||||
slots_processing=context.n_slots,
|
||||
expected_slots=[{'id': slot_id, 'state': 1}
|
||||
for slot_id in range(context.n_slots)])
|
||||
for slot_id in
|
||||
range(context.n_slots if context.n_slots else 1)])
|
||||
case _:
|
||||
assert False, "unknown status"
|
||||
|
||||
@ -157,24 +179,24 @@ async def step_request_completion(context, api_error):
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
n_predict=context.n_predict,
|
||||
server_seed=context.server_seed,
|
||||
seed=await completions_seed(context),
|
||||
expect_api_error=expect_api_error,
|
||||
user_api_key=context.user_api_key)
|
||||
context.tasks_result.append(completion)
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}")
|
||||
print(f"Completion response: {completion}\n")
|
||||
if expect_api_error:
|
||||
assert completion == 401, f"completion must be an 401 status code: {completion}"
|
||||
|
||||
|
||||
@step(u'{predicted_n} tokens are predicted matching {re_content}')
|
||||
@step(u'{predicted_n:d} tokens are predicted matching {re_content}')
|
||||
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n), re_content)
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n, re_content)
|
||||
|
||||
|
||||
@step(u'{predicted_n} tokens are predicted')
|
||||
@step(u'{predicted_n:d} tokens are predicted')
|
||||
def step_n_tokens_predicted(context, predicted_n):
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n))
|
||||
assert_n_tokens_predicted(context.tasks_result.pop(), predicted_n)
|
||||
|
||||
|
||||
@step(u'a user prompt {user_prompt}')
|
||||
@ -192,9 +214,9 @@ def step_model(context, model):
|
||||
context.model = model
|
||||
|
||||
|
||||
@step(u'{max_tokens} max tokens to predict')
|
||||
@step(u'{max_tokens:d} max tokens to predict')
|
||||
def step_max_tokens(context, max_tokens):
|
||||
context.n_predict = int(max_tokens)
|
||||
context.n_predict = max_tokens
|
||||
|
||||
|
||||
@step(u'streaming is {enable_streaming}')
|
||||
@ -222,11 +244,70 @@ def step_server_api_key(context, server_api_key):
|
||||
context.server_api_key = server_api_key
|
||||
|
||||
|
||||
@step(u'{n_junk:d} as number of junk')
|
||||
def step_n_junk(context, n_junk):
|
||||
context.n_junk = n_junk
|
||||
|
||||
|
||||
@step(u'{n_batch:d} as batch size')
|
||||
def step_n_batch(context, n_batch):
|
||||
context.n_batch = n_batch
|
||||
|
||||
|
||||
@step(u'{seed:d} as seed')
|
||||
def step_seed(context, seed):
|
||||
context.seed = seed
|
||||
|
||||
|
||||
@step(u'a prefix prompt')
|
||||
def step_prompt_prefix(context):
|
||||
context.prompt_prefix = context.text
|
||||
|
||||
|
||||
@step(u'a junk suffix prompt')
|
||||
def step_prompt_junk_suffix(context):
|
||||
context.prompt_junk_suffix = context.text
|
||||
|
||||
|
||||
@step(u'a suffix prompt')
|
||||
def step_prompt_suffix(context):
|
||||
context.prompt_suffix = context.text
|
||||
|
||||
|
||||
@step(u'{n_ga:d} group attention factor'
|
||||
u' to extend context size through self-extend')
|
||||
def step_impl(context, n_ga):
|
||||
context.n_ga = n_ga
|
||||
|
||||
|
||||
@step(u'{n_ga_w:d} group attention width to extend context size through self-extend')
|
||||
def step_impl(context, n_ga_w):
|
||||
context.n_ga_w = n_ga_w
|
||||
|
||||
|
||||
@step(u'a passkey prompt template')
|
||||
def step_prompt_passkey(context):
|
||||
context.prompt_passkey = context.text
|
||||
|
||||
|
||||
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
|
||||
def step_prompt_passkey(context, passkey, i_pos):
|
||||
prompt = ""
|
||||
for i in range(context.n_junk):
|
||||
if i % context.n_junk == i_pos:
|
||||
prompt += context.prompt_passkey # the passkey is already substituted
|
||||
prompt += context.prompt_junk_suffix
|
||||
if context.debug:
|
||||
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
|
||||
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
|
||||
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context, api_error):
|
||||
if context.debug:
|
||||
print(f"Submitting OAI compatible completions request...")
|
||||
print(f"Submitting OAI compatible completions request...\n")
|
||||
expect_api_error = api_error == 'raised'
|
||||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
context.system_prompt,
|
||||
@ -241,8 +322,7 @@ async def step_oai_chat_completions(context, api_error):
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
seed=await completions_seed(context),
|
||||
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None,
|
||||
@ -276,8 +356,10 @@ async def step_concurrent_completion_requests(context):
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
prompt_prefix=context.prompt_prefix,
|
||||
prompt_suffix=context.prompt_suffix,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key if hasattr(context,
|
||||
'user_api_key') else None)
|
||||
|
||||
@ -297,8 +379,7 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
@ -318,7 +399,9 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
seed=context.seed
|
||||
if hasattr(context, 'seed') else
|
||||
context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
@ -330,11 +413,10 @@ async def step_all_prompts_are_predicted(context):
|
||||
await all_prompts_are_predicted(context)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted with {n_predict} tokens')
|
||||
@step(u'all prompts are predicted with {n_expected_predicted:d} tokens')
|
||||
@async_run_until_complete
|
||||
async def step_all_prompts_are_predicted_with_n_tokens(context, n_predict):
|
||||
expected_predicted_n = int(n_predict)
|
||||
await all_prompts_are_predicted(context, expected_predicted_n)
|
||||
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
|
||||
await all_prompts_are_predicted(context, n_expected_predicted)
|
||||
|
||||
|
||||
async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
||||
@ -464,6 +546,8 @@ async def step_prometheus_metrics_exported(context):
|
||||
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
|
||||
metrics_raw = await metrics_response.text()
|
||||
metric_exported = False
|
||||
if context.debug:
|
||||
print(f"/metrics answer:\n{metrics_raw}\n")
|
||||
for metric in parser.text_string_to_metric_families(metrics_raw):
|
||||
match metric.name:
|
||||
case "llamacpp:kv_cache_usage_ratio":
|
||||
@ -472,6 +556,37 @@ async def step_prometheus_metrics_exported(context):
|
||||
assert metric_exported, "No metrics exported"
|
||||
|
||||
|
||||
@step(u'available models')
|
||||
def step_available_models(context):
|
||||
# openai client always expects an api_key
|
||||
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
|
||||
openai.api_base = f'{context.base_url}/v1'
|
||||
context.models = openai.Model.list().data
|
||||
|
||||
|
||||
@step(u'{n_model:d} models are supported')
|
||||
def step_supported_models(context, n_model):
|
||||
if context.debug:
|
||||
print("server models available:", context.models)
|
||||
assert len(context.models) == n_model
|
||||
|
||||
|
||||
@step(u'model {i_model:d} is {param} {preposition} {param_value}')
|
||||
def step_supported_models(context, i_model, param, preposition, param_value):
|
||||
assert i_model < len(context.models)
|
||||
model = context.models[i_model]
|
||||
|
||||
param_value = param_value.split(' ', 1)[0]
|
||||
match param:
|
||||
case 'identified':
|
||||
value = model.id
|
||||
case 'trained':
|
||||
value = str(model.meta.n_ctx_train)
|
||||
case _:
|
||||
assert False, "param {param} not supported"
|
||||
assert param_value == value, f"model param {param} {value} != {param_value}"
|
||||
|
||||
|
||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
n_prompts = len(context.prompts)
|
||||
if context.debug:
|
||||
@ -486,8 +601,10 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
async def request_completion(prompt,
|
||||
base_url,
|
||||
debug=False,
|
||||
prompt_prefix=None,
|
||||
prompt_suffix=None,
|
||||
n_predict=None,
|
||||
server_seed=None,
|
||||
seed=None,
|
||||
expect_api_error=None,
|
||||
user_api_key=None):
|
||||
if debug:
|
||||
@ -504,11 +621,14 @@ async def request_completion(prompt,
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/completion',
|
||||
json={
|
||||
"input_prefix": prompt_prefix,
|
||||
"prompt": prompt,
|
||||
"n_predict": int(n_predict) if n_predict is not None else -1,
|
||||
"seed": server_seed if server_seed is not None else 42
|
||||
"input_suffix": prompt_suffix,
|
||||
"n_predict": n_predict if n_predict is not None else -1,
|
||||
"seed": seed if seed is not None else 42
|
||||
},
|
||||
headers=headers) as response:
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
if expect_api_error is None or not expect_api_error:
|
||||
assert response.status == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
@ -526,14 +646,14 @@ async def oai_chat_completions(user_prompt,
|
||||
model=None,
|
||||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
server_seed=None,
|
||||
seed=None,
|
||||
user_api_key=None,
|
||||
expect_api_error=None):
|
||||
if debug:
|
||||
print(f"Sending OAI Chat completions request: {user_prompt}")
|
||||
# openai client always expects an api key
|
||||
user_api_key = user_api_key if user_api_key is not None else 'nope'
|
||||
seed = server_seed if server_seed is not None else 42
|
||||
seed = seed if seed is not None else 42
|
||||
enable_streaming = enable_streaming if enable_streaming is not None else False
|
||||
payload = {
|
||||
"messages": [
|
||||
@ -692,20 +812,32 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
||||
content = completion_response['content']
|
||||
n_predicted = completion_response['timings']['predicted_n']
|
||||
assert len(content) > 0, "no token predicted"
|
||||
if expected_predicted_n is not None:
|
||||
if re_content is not None:
|
||||
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
|
||||
matches = p.finditer(content)
|
||||
last_match = 0
|
||||
highlighted = ''
|
||||
for match in matches:
|
||||
start, end = match.span()
|
||||
highlighted += content[last_match: start]
|
||||
highlighted += '\x1b[33m'
|
||||
highlighted += content[start: end]
|
||||
highlighted += '\x1b[0m'
|
||||
last_match = end
|
||||
highlighted += content[last_match:]
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"Checking completion response: {highlighted}\n")
|
||||
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
|
||||
if expected_predicted_n and expected_predicted_n > 0:
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
f' {n_predicted} <> {expected_predicted_n}')
|
||||
if re_content is not None:
|
||||
re_content = '^.*' + re_content.replace('<or>', '|') + '.*$'
|
||||
assert re.match(re_content, content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL), (
|
||||
f'invalid tokens predicted:'
|
||||
f' ```\n{content}\n``` do not match /{re_content}/')
|
||||
|
||||
|
||||
|
||||
async def gather_tasks_results(context):
|
||||
n_tasks = len(context.concurrent_tasks)
|
||||
if context.debug:
|
||||
print(f"Waiting for all {n_tasks} tasks results...")
|
||||
print(f"Waiting for all {n_tasks} tasks results...\n")
|
||||
for task_no in range(n_tasks):
|
||||
context.tasks_result.append(await context.concurrent_tasks.pop())
|
||||
n_completions = len(context.tasks_result)
|
||||
@ -716,15 +848,13 @@ async def wait_for_health_status(context,
|
||||
base_url,
|
||||
expected_http_status_code,
|
||||
expected_health_status,
|
||||
timeout=3,
|
||||
params=None,
|
||||
slots_idle=None,
|
||||
slots_processing=None,
|
||||
expected_slots=None):
|
||||
if context.debug:
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}")
|
||||
timeout = 3 # seconds
|
||||
if expected_health_status == 'ok':
|
||||
timeout = 10 # CI slow inference
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
|
||||
interval = 0.5
|
||||
counter = 0
|
||||
async with aiohttp.ClientSession() as session:
|
||||
@ -734,7 +864,7 @@ async def wait_for_health_status(context,
|
||||
health = await health_response.json()
|
||||
if context.debug:
|
||||
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
|
||||
f"'{base_url}/health'?{params} is {health}")
|
||||
f"'{base_url}/health'?{params} is {health}\n")
|
||||
if (status_code == expected_http_status_code
|
||||
and health['status'] == expected_health_status
|
||||
and (slots_idle is None or health['slots_idle'] == slots_idle)
|
||||
@ -757,7 +887,7 @@ async def wait_for_health_status(context,
|
||||
if expected_http_status_code == 503:
|
||||
if len(context.tasks_result) == 0:
|
||||
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
|
||||
" busy health check missed, probably too fast inference\x1b[0m")
|
||||
" busy health check missed, probably too fast inference\x1b[0m\n")
|
||||
n_completions = await gather_tasks_results(context)
|
||||
if n_completions > 0:
|
||||
return
|
||||
@ -791,6 +921,11 @@ def assert_slots_status(slots, expected_slots):
|
||||
f" = {expected[key]} != {slot[key]}")
|
||||
|
||||
|
||||
async def completions_seed(context):
|
||||
return context.seed if hasattr(context, 'seed') and context.seed is not None \
|
||||
else context.server_seed if hasattr(context, 'server_seed') else None
|
||||
|
||||
|
||||
def start_server_background(context):
|
||||
context.server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
@ -800,27 +935,35 @@ def start_server_background(context):
|
||||
'--port', context.server_port,
|
||||
'--model', context.model_file
|
||||
]
|
||||
if context.n_batch:
|
||||
server_args.extend(['--batch-size', context.n_batch])
|
||||
if context.n_gpu_layer:
|
||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||
if context.server_continuous_batching:
|
||||
server_args.append('--cont-batching')
|
||||
if context.server_embeddings:
|
||||
server_args.append('--embedding')
|
||||
if context.server_metrics:
|
||||
server_args.append('--metrics')
|
||||
if context.model_alias is not None:
|
||||
if context.model_alias:
|
||||
server_args.extend(['--alias', context.model_alias])
|
||||
if context.n_ctx is not None:
|
||||
if context.n_ctx:
|
||||
server_args.extend(['--ctx-size', context.n_ctx])
|
||||
if context.n_slots is not None:
|
||||
if context.n_slots:
|
||||
server_args.extend(['--parallel', context.n_slots])
|
||||
if context.n_server_predict is not None:
|
||||
if context.n_server_predict:
|
||||
server_args.extend(['--n-predict', context.n_server_predict])
|
||||
if context.server_api_key is not None:
|
||||
if context.server_api_key:
|
||||
server_args.extend(['--api-key', context.server_api_key])
|
||||
if context.n_ga:
|
||||
server_args.extend(['--grp-attn-n', context.n_ga])
|
||||
if context.n_ga_w:
|
||||
server_args.extend(['--grp-attn-w', context.n_ga_w])
|
||||
if context.debug:
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path}", *server_args)
|
||||
print(f"starting server with: {context.server_path} {server_args}\n")
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
close_fds=True)
|
||||
|
@ -1,4 +1,4 @@
|
||||
# run with ./test.sh --tags wrong_usage
|
||||
# run with: ./tests.sh --no-skipped --tags wrong_usage
|
||||
@wrong_usage
|
||||
Feature: Wrong usage of llama.cpp server
|
||||
|
||||
@ -7,7 +7,7 @@ Feature: Wrong usage of llama.cpp server
|
||||
# or pass n_predict/max_tokens in the request.
|
||||
Scenario: Infinite loop
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
# Uncomment below to fix the issue
|
||||
#And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
@ -18,4 +18,5 @@ Feature: Wrong usage of llama.cpp server
|
||||
# Uncomment below to fix the issue
|
||||
#And 128 max tokens to predict
|
||||
Given concurrent completion requests
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
||||
|
@ -1,4 +1,5 @@
|
||||
aiohttp~=3.9.3
|
||||
behave~=1.2.6
|
||||
huggingface_hub~=0.20.3
|
||||
openai~=0.25.0
|
||||
prometheus-client~=0.20.0
|
||||
|
@ -5,7 +5,7 @@ set -eu
|
||||
if [ $# -lt 1 ]
|
||||
then
|
||||
# Start @llama.cpp scenario
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages' --tags llama.cpp
|
||||
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
else
|
||||
behave "$@"
|
||||
fi
|
||||
|
@ -126,8 +126,7 @@ static inline void server_log(const char *level, const char *function, int line,
|
||||
for (const auto& el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
|
||||
ss << buf;
|
||||
ss << " " << el.key() << "=" << value;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
|
Loading…
Reference in New Issue
Block a user