mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
llama : make quantize example up to 2.7x faster (#3115)
This commit is contained in:
parent
feea179e9f
commit
98311c4277
269
llama.cpp
269
llama.cpp
@ -5099,7 +5099,16 @@ void llama_beam_search(llama_context * ctx,
|
||||
// quantization
|
||||
//
|
||||
|
||||
static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector<float> & output, const size_t nelements, const int nthread) {
|
||||
template <typename T>
|
||||
struct no_init {
|
||||
T value;
|
||||
no_init() { /* do nothing */ }
|
||||
};
|
||||
|
||||
static void llama_convert_tensor_internal(
|
||||
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
const size_t nelements, const int nthread
|
||||
) {
|
||||
if (output.size() < nelements) {
|
||||
output.resize(nelements);
|
||||
}
|
||||
@ -5134,7 +5143,6 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect
|
||||
auto blocks_per_thread = nblocks / nthread;
|
||||
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
||||
|
||||
std::vector<std::thread> workers;
|
||||
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
|
||||
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
||||
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
|
||||
@ -5147,15 +5155,124 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect
|
||||
qtype.to_float(inbuf, outbuf, nels);
|
||||
}
|
||||
};
|
||||
workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
|
||||
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
|
||||
in_buff_offs += thr_block_bytes;
|
||||
out_buff_offs += thr_elems;
|
||||
}
|
||||
for (auto & worker : workers) {
|
||||
worker.join();
|
||||
}
|
||||
for (auto & w : workers) { w.join(); }
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
static ggml_type get_k_quant_type(
|
||||
ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
|
||||
int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
|
||||
) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
const auto tn = LLM_TN(model.arch);
|
||||
|
||||
auto use_more_bits = [](int i_layer, int num_layers) -> bool {
|
||||
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
|
||||
};
|
||||
|
||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
int nx = tensor->ne[0];
|
||||
if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
|
||||
(*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
|
||||
if (model.type == MODEL_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++*i_attention_wv;
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
|
||||
: model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (model.arch == LLM_ARCH_FALCON) {
|
||||
new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++*i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (model.arch != LLM_ARCH_FALCON) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
}
|
||||
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
}
|
||||
// This can be used to reduce the size of the Q5_K_S model.
|
||||
// The associated PPL increase is fully in line with the size reduction
|
||||
//else {
|
||||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||||
//}
|
||||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
|
||||
convert_incompatible_tensor = true;
|
||||
}
|
||||
}
|
||||
if (convert_incompatible_tensor) {
|
||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
||||
} else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
|
||||
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported tensor size encountered\n");
|
||||
}
|
||||
}
|
||||
|
||||
return new_type;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
ggml_type quantized_type;
|
||||
llama_ftype ftype = params->ftype;
|
||||
@ -5239,18 +5356,14 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||
|
||||
std::vector<std::thread> workers;
|
||||
workers.reserve(nthread);
|
||||
std::mutex mutex;
|
||||
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
|
||||
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
|
||||
};
|
||||
#endif
|
||||
|
||||
int idx = 0;
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
std::vector<uint8_t> work;
|
||||
std::vector<no_init<uint8_t>> read_data;
|
||||
std::vector<no_init<uint8_t>> work;
|
||||
std::vector<no_init<float>> f32_conv_buf;
|
||||
|
||||
// populate the original tensors so we get an initial meta data
|
||||
for (int i = 0; i < ml->n_tensors; ++i) {
|
||||
@ -5272,7 +5385,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
read_data.resize(ggml_nbytes(tensor));
|
||||
if (read_data.size() < ggml_nbytes(tensor)) {
|
||||
read_data.resize(ggml_nbytes(tensor));
|
||||
}
|
||||
tensor->data = read_data.data();
|
||||
ml->load_data_for(tensor);
|
||||
|
||||
@ -5297,101 +5412,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
if (quantize) {
|
||||
new_type = quantized_type;
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
const auto tn = LLM_TN(ml->get_arch());
|
||||
|
||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
int nx = tensor->ne[0];
|
||||
if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
|
||||
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
|
||||
if (model.type == MODEL_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++i_attention_wv;
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
|
||||
: model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (model.arch == LLM_ARCH_FALCON) {
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (model.arch != LLM_ARCH_FALCON) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
}
|
||||
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
}
|
||||
// This can be used to reduce the size of the Q5_K_S model.
|
||||
// The associated PPL increase is fully in line with the size reduction
|
||||
//else {
|
||||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||||
//}
|
||||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
|
||||
convert_incompatible_tensor = true;
|
||||
}
|
||||
}
|
||||
if (convert_incompatible_tensor) {
|
||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
||||
} else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
|
||||
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported tensor size encountered\n");
|
||||
}
|
||||
}
|
||||
new_type = get_k_quant_type(
|
||||
new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
|
||||
);
|
||||
#endif
|
||||
// If we've decided to quantize to the same type the tensor is already
|
||||
// in then there's nothing to do.
|
||||
@ -5406,23 +5429,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
const size_t nelements = ggml_nelements(tensor);
|
||||
|
||||
float * f32_data;
|
||||
std::vector<float> f32_conv_buf;
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
f32_data = (float *) tensor->data;
|
||||
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||||
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||||
} else {
|
||||
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
|
||||
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
f32_data = (float *) f32_conv_buf.data();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
|
||||
fflush(stdout);
|
||||
|
||||
work.resize(nelements * 4); // upper bound on size
|
||||
if (work.size() < nelements * 4) {
|
||||
work.resize(nelements * 4); // upper bound on size
|
||||
}
|
||||
new_data = work.data();
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
std::array<int64_t, 1 << 4> hist_cur = {};
|
||||
|
||||
static const int chunk_size = 32 * 512;
|
||||
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
||||
@ -5433,13 +5457,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
size_t counter = 0;
|
||||
new_size = 0;
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
|
||||
std::vector<int64_t> local_hist;
|
||||
std::array<int64_t, 1 << 4> local_hist = {};
|
||||
size_t local_size = 0;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
size_t first = counter; counter += chunk_size;
|
||||
if (first >= nelements) {
|
||||
if (!local_hist.empty()) {
|
||||
if (local_size > 0) {
|
||||
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||
hist_cur[j] += local_hist[j];
|
||||
}
|
||||
@ -5449,22 +5473,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
}
|
||||
lock.unlock();
|
||||
size_t last = std::min(nelements, first + chunk_size);
|
||||
if (local_hist.empty()) {
|
||||
local_hist.resize(hist_cur.size(), 0);
|
||||
}
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
||||
}
|
||||
};
|
||||
if ((int) workers.size() < nthread_use - 1) {
|
||||
workers.resize(nthread_use - 1);
|
||||
}
|
||||
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||
workers[it] = std::thread(compute);
|
||||
workers.emplace_back(compute);
|
||||
}
|
||||
compute();
|
||||
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||
workers[it].join();
|
||||
}
|
||||
for (auto & w : workers) { w.join(); }
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
|
Loading…
Reference in New Issue
Block a user