mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 21:34:36 +00:00
Merge remote-tracking branch 'upstream/master' into nomic-vulkan-redo
This commit is contained in:
commit
9ae88baf38
20
.github/workflows/python-lint.yml
vendored
Normal file
20
.github/workflows/python-lint.yml
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
name: flake8 Lint
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
flake8-lint:
|
||||
runs-on: ubuntu-latest
|
||||
name: Lint
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: flake8 Lint
|
||||
uses: py-actions/flake8@v2
|
||||
with:
|
||||
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
|
||||
exclude: "examples/*,examples/*/**,*/**/__init__.py"
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -64,6 +64,7 @@ models-mnt
|
||||
/speculative
|
||||
/parallel
|
||||
/train-text-from-scratch
|
||||
/tokenize
|
||||
/vdot
|
||||
/common/build-info.cpp
|
||||
arm_neon.h
|
||||
|
@ -597,6 +597,15 @@ if (LLAMA_LTO)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
|
||||
ERROR_VARIABLE output
|
||||
)
|
||||
if (output MATCHES "dyld-1015\.7")
|
||||
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
|
||||
endif()
|
||||
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
@ -704,8 +713,12 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
add_compile_options(-mcpu=native -mtune=native)
|
||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
add_compile_options(-mcpu=powerpc64le)
|
||||
else()
|
||||
add_compile_options(-mcpu=native -mtune=native)
|
||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
18
Makefile
18
Makefile
@ -2,7 +2,7 @@
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
speculative infill tokenize benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
@ -239,6 +239,11 @@ else
|
||||
endif
|
||||
endif
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
|
||||
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
|
||||
@ -337,6 +342,12 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
endif
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64le%,$(UNAME_M)),)
|
||||
MK_CFLAGS += -mcpu=powerpc64le
|
||||
MK_CXXFLAGS += -mcpu=powerpc64le
|
||||
CUDA_POWER_ARCH = 1
|
||||
endif
|
||||
|
||||
else
|
||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
@ -387,6 +398,8 @@ else
|
||||
endif #LLAMA_CUDA_NVCC
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
else ifdef CUDA_POWER_ARCH
|
||||
NVCCFLAGS +=
|
||||
else
|
||||
NVCCFLAGS += -arch=native
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
@ -581,6 +594,9 @@ infill: examples/infill/infill.cpp ggml.o llama.o $(C
|
||||
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
15
README.md
15
README.md
@ -10,7 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ **Upcoming change that might break functionality. Help with testing is needed:** https://github.com/ggerganov/llama.cpp/pull/3912
|
||||
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
|
||||
----
|
||||
|
||||
@ -93,6 +93,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
|
||||
|
||||
|
||||
**Bindings:**
|
||||
@ -409,19 +410,27 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||
Make sure to have ROCm installed.
|
||||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
||||
Windows support is coming soon...
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_HIPBLAS=1
|
||||
```
|
||||
- Using `CMake`:
|
||||
- Using `CMake` for Linux:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
|
||||
cmake --build .
|
||||
```
|
||||
- Using `CMake` for Windows:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
|
||||
cmake --build .
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
|
||||
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
|
||||
|
@ -12,6 +12,7 @@
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
@ -491,8 +492,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.interactive_first = true;
|
||||
} else if (arg == "-ins" || arg == "--instruct") {
|
||||
params.instruct = true;
|
||||
} else if (arg == "-cml" || arg == "--chatml") {
|
||||
params.chatml = true;
|
||||
} else if (arg == "--infill") {
|
||||
params.infill = true;
|
||||
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
|
||||
params.dump_kv_cache = true;
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--simple-io") {
|
||||
@ -730,6 +735,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -i, --interactive run in interactive mode\n");
|
||||
printf(" --interactive-first run in interactive mode and wait for input right away\n");
|
||||
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
|
||||
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
printf(" -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
printf(" halt generation at PROMPT, return control in interactive mode\n");
|
||||
@ -832,6 +838,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
#endif // GGML_USE_CUBLAS
|
||||
#endif
|
||||
printf(" --verbose-prompt print prompt before generation\n");
|
||||
printf(" -dkvc, --dump-kv-cache\n");
|
||||
printf(" verbose print of the KV cache\n");
|
||||
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||
@ -931,7 +939,7 @@ void llama_batch_add(
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits) {
|
||||
batch.token [batch.n_tokens] = id;
|
||||
batch.pos [batch.n_tokens] = pos,
|
||||
batch.pos [batch.n_tokens] = pos;
|
||||
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
|
||||
for (size_t i = 0; i < seq_ids.size(); ++i) {
|
||||
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
|
||||
@ -1072,6 +1080,12 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
||||
return result;
|
||||
}
|
||||
|
||||
bool llama_should_add_bos_token(const llama_model * model) {
|
||||
const int add_bos = llama_add_bos_token(model);
|
||||
|
||||
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
||||
}
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
@ -1188,6 +1202,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
|
||||
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
|
||||
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
|
||||
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
|
||||
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
|
||||
data_str = "\"" + data_str + "\"";
|
||||
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
|
||||
return;
|
||||
@ -1376,3 +1391,77 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
|
||||
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
|
||||
|
||||
llama_kv_cache_view_cell * c_curr = view.cells;
|
||||
llama_seq_id * cs_curr = view.cells_sequences;
|
||||
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
|
||||
if (i % row_size == 0) {
|
||||
printf("\n%5d: ", i);
|
||||
}
|
||||
int seq_count = 0;
|
||||
for (int j = 0; j < view.n_max_seq; j++) {
|
||||
if (cs_curr[j] >= 0) { seq_count++; }
|
||||
}
|
||||
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
|
||||
}
|
||||
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
|
||||
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
|
||||
|
||||
std::unordered_map<llama_seq_id, size_t> seqs;
|
||||
llama_kv_cache_view_cell * c_curr = view.cells;
|
||||
llama_seq_id * cs_curr = view.cells_sequences;
|
||||
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
|
||||
for (int j = 0; j < view.n_max_seq; j++) {
|
||||
if (cs_curr[j] < 0) { continue; }
|
||||
if (seqs.find(cs_curr[j]) == seqs.end()) {
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
seqs[cs_curr[j]] = seqs.size();
|
||||
}
|
||||
}
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
}
|
||||
|
||||
printf("=== Sequence legend: ");
|
||||
for (const auto & it : seqs) {
|
||||
printf("%zu=%d, ", it.second, it.first);
|
||||
}
|
||||
printf("'+'=other sequence ids");
|
||||
|
||||
c_curr = view.cells;
|
||||
cs_curr = view.cells_sequences;
|
||||
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
|
||||
if (i % row_size == 0) {
|
||||
printf("\n%5d: ", i);
|
||||
}
|
||||
for (int j = 0; j < view.n_max_seq; j++) {
|
||||
if (cs_curr[j] >= 0) {
|
||||
const auto & it = seqs.find(cs_curr[j]);
|
||||
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
|
||||
} else {
|
||||
putchar('.');
|
||||
}
|
||||
}
|
||||
putchar(' ');
|
||||
}
|
||||
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
@ -102,6 +102,7 @@ struct gpt_params {
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
@ -121,6 +122,7 @@ struct gpt_params {
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
@ -200,6 +202,10 @@ std::string llama_detokenize_bpe(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
// Uses the value from the model metadata if possible, otherwise
|
||||
// defaults to true when model type is SPM, otherwise false.
|
||||
bool llama_should_add_bos_token(const llama_model * model);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
@ -213,3 +219,13 @@ std::string get_sortable_timestamp();
|
||||
void dump_non_result_info_yaml(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
@ -1136,6 +1136,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
|
||||
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
|
||||
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
|
||||
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
|
||||
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -1355,6 +1356,17 @@ bool consume_common_train_arg(
|
||||
return true;
|
||||
}
|
||||
params->adam_gclip = std::stof(argv[i]);
|
||||
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
*invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
params->print_usage = true;
|
||||
return true;
|
||||
|
@ -1,317 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF baichuan --> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
import itertools
|
||||
import numpy as np
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
# reverse HF permute back to original pth layout
|
||||
|
||||
|
||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
||||
|
||||
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return weights[r * n_part : r * n_part + r, ...]
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
|
||||
return num_parts
|
||||
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
endianess = gguf.GGUFEndian.LITTLE
|
||||
if args.bigendian:
|
||||
endianess = gguf.GGUFEndian.BIG
|
||||
endianess_str = "Big Endian" if args.bigendian else "Little Endian"
|
||||
print(f"gguf: Conversion Endianess {endianess}")
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
print("hello print: ",hparams["architectures"][0])
|
||||
if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
print(f"num_parts:{num_parts}\n")
|
||||
ARCH=gguf.MODEL_ARCH.BAICHUAN
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
elif "model_max_length" in hparams:
|
||||
ctx_length = hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
vocab_size = hparams.get('vocab_size')
|
||||
if vocab_size is None:
|
||||
vocab_size = tokenizer.vocab_size()
|
||||
|
||||
for i in range(vocab_size):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
tmp=model_part
|
||||
for i in range(block_count):
|
||||
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
|
||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
|
||||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
|
||||
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
@ -150,8 +150,6 @@ class Model:
|
||||
|
||||
@staticmethod
|
||||
def from_model_architecture(model_architecture):
|
||||
if model_architecture == "StableLMEpochForCausalLM":
|
||||
return StableLMModel
|
||||
if model_architecture == "GPTNeoXForCausalLM":
|
||||
return GPTNeoXModel
|
||||
if model_architecture == "BloomForCausalLM":
|
||||
@ -168,6 +166,8 @@ class Model:
|
||||
return RefactModel
|
||||
if model_architecture == "PersimmonForCausalLM":
|
||||
return PersimmonModel
|
||||
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return StableLMModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@ -193,7 +193,7 @@ class Model:
|
||||
return gguf.MODEL_ARCH.MPT
|
||||
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
|
||||
return gguf.MODEL_ARCH.BAICHUAN
|
||||
if arch == "FalconForCausalLM":
|
||||
if arch in ("FalconForCausalLM", "RWForCausalLM"):
|
||||
return gguf.MODEL_ARCH.FALCON
|
||||
if arch == "GPTBigCodeForCausalLM":
|
||||
return gguf.MODEL_ARCH.STARCODER
|
||||
@ -201,6 +201,8 @@ class Model:
|
||||
return gguf.MODEL_ARCH.REFACT
|
||||
if arch == "PersimmonForCausalLM":
|
||||
return gguf.MODEL_ARCH.PERSIMMON
|
||||
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@ -294,15 +296,6 @@ class Model:
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
class StableLMModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_dimension_count(
|
||||
int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
|
||||
)
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
|
||||
class GPTNeoXModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
@ -824,8 +817,24 @@ class PersimmonModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
class StableLMModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_name(dir_model.name)
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
|
@ -2,7 +2,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import struct
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
@ -15,11 +14,13 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
|
||||
class GGMLFormat(IntEnum):
|
||||
GGML = 0
|
||||
GGMF = 1
|
||||
GGJT = 2
|
||||
|
||||
|
||||
class GGMLFType(IntEnum):
|
||||
ALL_F32 = 0
|
||||
MOSTLY_F16 = 1
|
||||
@ -39,6 +40,7 @@ class GGMLFType(IntEnum):
|
||||
MOSTLY_Q5_K_M = 17
|
||||
MOSTLY_Q6_K = 18
|
||||
|
||||
|
||||
class Hyperparameters:
|
||||
def __init__(self):
|
||||
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
|
||||
@ -70,6 +72,7 @@ class Hyperparameters:
|
||||
def __str__(self):
|
||||
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
|
||||
|
||||
|
||||
class Vocab:
|
||||
def __init__(self, load_scores = True):
|
||||
self.items = []
|
||||
@ -91,6 +94,7 @@ class Vocab:
|
||||
self.items.append((item_text, item_score))
|
||||
return offset - orig_offset
|
||||
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, use_padding = True):
|
||||
self.name = None
|
||||
@ -124,6 +128,7 @@ class Tensor:
|
||||
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
||||
return offset - orig_offset
|
||||
|
||||
|
||||
class GGMLModel:
|
||||
def __init__(self):
|
||||
self.hyperparameters = None
|
||||
@ -160,8 +165,8 @@ class GGMLModel:
|
||||
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
|
||||
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
|
||||
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
|
||||
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
|
||||
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
|
||||
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
|
||||
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
|
||||
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
|
||||
if len(err) > 0:
|
||||
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
|
||||
@ -188,6 +193,7 @@ class GGMLModel:
|
||||
hp.set_n_ff(self)
|
||||
return offset
|
||||
|
||||
|
||||
class GGMLToGGUF:
|
||||
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
|
||||
hp = ggml_model.hyperparameters
|
||||
@ -218,7 +224,7 @@ class GGMLToGGUF:
|
||||
gguf_writer = gguf.GGUFWriter(
|
||||
self.cfg.output,
|
||||
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
|
||||
use_temp_file = False )
|
||||
use_temp_file = False)
|
||||
self.add_params(gguf_writer)
|
||||
self.add_vocab(gguf_writer)
|
||||
if self.special_vocab is not None:
|
||||
@ -342,7 +348,8 @@ class GGMLToGGUF:
|
||||
mapped_name,
|
||||
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
|
||||
raw_shape = tempdims,
|
||||
raw_dtype = tensor.dtype )
|
||||
raw_dtype = tensor.dtype)
|
||||
|
||||
|
||||
def handle_metadata(cfg, hp):
|
||||
import convert
|
||||
@ -366,38 +373,40 @@ def handle_metadata(cfg, hp):
|
||||
raise ValueError('Unable to load metadata')
|
||||
vocab = convert.load_vocab(
|
||||
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
|
||||
cfg.vocabtype )
|
||||
cfg.vocabtype)
|
||||
# FIXME: Respect cfg.vocab_dir?
|
||||
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
|
||||
load_merges = cfg.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
load_merges = cfg.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return (params, vocab, svocab)
|
||||
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, required = True,
|
||||
help = 'Input GGMLv3 filename')
|
||||
help = 'Input GGMLv3 filename')
|
||||
parser.add_argument('--output', '-o', type = Path, required = True,
|
||||
help ='Output GGUF filename')
|
||||
help ='Output GGUF filename')
|
||||
parser.add_argument('--name',
|
||||
help = 'Set model name')
|
||||
help = 'Set model name')
|
||||
parser.add_argument('--desc',
|
||||
help = 'Set model description')
|
||||
help = 'Set model description')
|
||||
parser.add_argument('--gqa', type = int, default = 1,
|
||||
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
||||
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
||||
parser.add_argument('--eps', default = '5.0e-06',
|
||||
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
||||
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
||||
parser.add_argument('--context-length', '-c', type=int, default = 2048,
|
||||
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
||||
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
||||
parser.add_argument('--model-metadata-dir', '-m', type = Path,
|
||||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
parser.add_argument("--vocab-dir", type=Path,
|
||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(f'* Using config: {cfg}')
|
||||
@ -407,7 +416,7 @@ def main():
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
model = GGMLModel()
|
||||
print('* Scanning GGML input file')
|
||||
offset = model.load(data, 0)
|
||||
offset = model.load(data, 0) # noqa
|
||||
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
||||
vocab_override = None
|
||||
params_override = None
|
||||
@ -422,12 +431,15 @@ def main():
|
||||
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
||||
if model.file_format == GGMLFormat.GGML:
|
||||
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
||||
converter = GGMLToGGUF(model, data, cfg,
|
||||
converter = GGMLToGGUF(
|
||||
model, data, cfg,
|
||||
params_override = params_override,
|
||||
vocab_override = vocab_override,
|
||||
special_vocab = special_vocab )
|
||||
special_vocab = special_vocab
|
||||
)
|
||||
converter.save()
|
||||
print(f'* Successful completion. Output saved to: {cfg.output}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -9,6 +9,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
|
||||
def _flatten_dict(dct, tensors, prefix=None):
|
||||
assert isinstance(dct, dict)
|
||||
for key in dct.keys():
|
||||
@ -21,6 +22,7 @@ def _flatten_dict(dct, tensors, prefix=None):
|
||||
raise ValueError(type(dct[key]))
|
||||
return None
|
||||
|
||||
|
||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||
@ -54,6 +56,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||
pass
|
||||
return tokens, scores, toktypes
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
@ -125,6 +128,5 @@ def main():
|
||||
print("")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
66
convert.py
Executable file → Normal file
66
convert.py
Executable file → Normal file
@ -46,6 +46,7 @@ DEFAULT_CONCURRENCY = 8
|
||||
# data types
|
||||
#
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DataType:
|
||||
name: str
|
||||
@ -55,15 +56,18 @@ class DataType:
|
||||
def elements_to_bytes(self, n_elements: int) -> int:
|
||||
return n_elements * self.dtype.itemsize
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class UnquantizedDataType(DataType):
|
||||
pass
|
||||
|
||||
|
||||
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
||||
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
||||
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
||||
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class QuantizedDataType(DataType):
|
||||
block_size: int
|
||||
@ -77,6 +81,7 @@ class QuantizedDataType(DataType):
|
||||
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
|
||||
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Q8_0QuantizedDataType(QuantizedDataType):
|
||||
# Mini Q8_0 quantization in Python!
|
||||
@ -86,6 +91,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
|
||||
n_blocks = arr.size // self.block_size
|
||||
blocks = arr.reshape((n_blocks, self.block_size))
|
||||
# Much faster implementation of block quantization contributed by @Cebtenzzre
|
||||
|
||||
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
|
||||
d = abs(blocks).max(axis = 1) / np.float32(127)
|
||||
with np.errstate(divide = 'ignore'):
|
||||
@ -94,10 +100,11 @@ class Q8_0QuantizedDataType(QuantizedDataType):
|
||||
yield from zip(d, qs)
|
||||
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
|
||||
|
||||
|
||||
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
|
||||
dtype = np.dtype(np.float32), valid_conversions = [],
|
||||
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
|
||||
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
|
||||
dtype = np.dtype(np.float32), valid_conversions = [],
|
||||
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
|
||||
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
|
||||
|
||||
# Quantized types skipped here because they may also map to np.float32
|
||||
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
|
||||
@ -116,6 +123,8 @@ SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
|
||||
# TODO: match this with `llama_ftype`
|
||||
# TODO: rename to LLAMAFileType
|
||||
# TODO: move to `gguf.py`
|
||||
|
||||
|
||||
class GGMLFileType(enum.IntEnum):
|
||||
AllF32 = 0
|
||||
MostlyF16 = 1 # except 1d tensors
|
||||
@ -128,6 +137,7 @@ class GGMLFileType(enum.IntEnum):
|
||||
# 1D tensors are always F32.
|
||||
return dt if len(tensor.shape) > 1 else DT_F32
|
||||
|
||||
|
||||
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
||||
GGMLFileType.AllF32 : DT_F32,
|
||||
GGMLFileType.MostlyF16 : DT_F16,
|
||||
@ -138,6 +148,7 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
||||
# hparams loading
|
||||
#
|
||||
|
||||
|
||||
@dataclass
|
||||
class Params:
|
||||
n_vocab: int
|
||||
@ -167,11 +178,11 @@ class Params:
|
||||
|
||||
# try transformer naming first
|
||||
if "model.layers.0.self_attn.q_proj.weight" in model:
|
||||
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
||||
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
||||
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
|
||||
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
||||
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
||||
else:
|
||||
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
||||
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
||||
|
||||
if n_layer < 1:
|
||||
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
|
||||
@ -308,7 +319,7 @@ class BpeVocab:
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer )
|
||||
if item['content'] not in self.bpe_tokenizer)
|
||||
|
||||
vocab_size: int = len(self.bpe_tokenizer)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
@ -326,7 +337,6 @@ class BpeVocab:
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.bpe_tokenizer
|
||||
from transformers.models.gpt2 import tokenization_gpt2
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
||||
|
||||
for i, _ in enumerate(tokenizer):
|
||||
@ -406,6 +416,7 @@ class SentencePieceVocab:
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
|
||||
|
||||
#
|
||||
@ -413,13 +424,14 @@ Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
|
||||
# TODO: reuse (probably move to gguf.py?)
|
||||
#
|
||||
|
||||
|
||||
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
||||
#print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
||||
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
class Tensor(metaclass=ABCMeta):
|
||||
@ -500,7 +512,7 @@ class LazyTensor:
|
||||
ret = self._load()
|
||||
# Should be okay if it maps to the same numpy type?
|
||||
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
|
||||
(self.data_type, ret.data_type, self.description)
|
||||
(self.data_type, ret.data_type, self.description)
|
||||
return ret
|
||||
|
||||
def astype(self, data_type: DataType) -> LazyTensor:
|
||||
@ -588,6 +600,7 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTe
|
||||
return lazy_tensor.load().permute(n_head, n_head_kv)
|
||||
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
|
||||
@ -595,6 +608,7 @@ def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_
|
||||
s[0] = s[0] // 3
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
return lazy_tensor.load().part(n_part)
|
||||
@ -690,6 +704,7 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
||||
data_base_path=pickle_paths[0][:-4],
|
||||
zip_file=zf)
|
||||
model = unpickler.load()
|
||||
if 'model' in model: model = model['model']
|
||||
as_dict = dict(model.items())
|
||||
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
||||
|
||||
@ -743,6 +758,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
|
||||
In = TypeVar('In')
|
||||
Out = TypeVar('Out')
|
||||
|
||||
|
||||
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
|
||||
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
||||
fast enough, this will stop calling `func` at some point rather than
|
||||
@ -777,6 +793,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
||||
break
|
||||
yield result
|
||||
|
||||
|
||||
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
||||
if params.n_vocab != vocab.vocab_size:
|
||||
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
|
||||
@ -795,7 +812,7 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
||||
|
||||
|
||||
class OutputFile:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
@ -875,7 +892,7 @@ class OutputFile:
|
||||
self.gguf.close()
|
||||
|
||||
@staticmethod
|
||||
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None:
|
||||
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||
check_vocab_size(params, vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
@ -937,8 +954,9 @@ class OutputFile:
|
||||
|
||||
of.close()
|
||||
|
||||
|
||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
|
||||
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||
return GGMLFileType.AllF32
|
||||
@ -951,10 +969,12 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
||||
|
||||
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
||||
|
||||
|
||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
||||
for (name, tensor) in model.items()}
|
||||
|
||||
|
||||
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
||||
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
||||
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
||||
@ -967,7 +987,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
||||
print(f"Permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
||||
#tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
||||
@ -992,6 +1012,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def nth_multifile_path(path: Path, n: int) -> Path | None:
|
||||
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
||||
the nth path in the model.
|
||||
@ -1036,7 +1057,8 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
# Be extra-friendly and accept either a file or a directory:
|
||||
if path.is_dir():
|
||||
# Check if it's a set of safetensors files first
|
||||
files = list(path.glob("model-00001-of-*.safetensors"))
|
||||
globs = ["model-00001-of-*.safetensors", "model.safetensors"]
|
||||
files = [file for glob in globs for file in path.glob(glob)]
|
||||
if not files:
|
||||
# Try the PyTorch patterns too, with lower priority
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
||||
@ -1123,7 +1145,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin, *.safetensors)")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
|
||||
@ -1172,8 +1194,8 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
@ -1186,8 +1208,8 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
load_merges = args.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
|
BIN
docs/llama-star/idea-arch.key
Executable file
BIN
docs/llama-star/idea-arch.key
Executable file
Binary file not shown.
BIN
docs/llama-star/idea-arch.pdf
Normal file
BIN
docs/llama-star/idea-arch.pdf
Normal file
Binary file not shown.
@ -24,6 +24,7 @@ else()
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(tokenize)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
|
@ -21,7 +21,7 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
```
|
||||
|
||||
Finetune output files will be saved every N iterations (config with `--save-every N`).
|
||||
**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
|
||||
So in above example after 10 iterations these files will be written:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
|
||||
|
@ -3,9 +3,7 @@
|
||||
|
||||
import argparse
|
||||
import gguf
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
|
||||
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||
|
||||
randomize_tensor_normal(lora->tok_embeddings_a, rnd);
|
||||
randomize_tensor_normal(lora->tok_embeddings_b, rnd);
|
||||
ggml_set_zero(lora->tok_embeddings_b);
|
||||
randomize_tensor_normal(lora->norm_a, rnd);
|
||||
randomize_tensor_normal(lora->norm_b, rnd);
|
||||
ggml_set_zero(lora->norm_b);
|
||||
randomize_tensor_normal(lora->output_a, rnd);
|
||||
randomize_tensor_normal(lora->output_b, rnd);
|
||||
ggml_set_zero(lora->output_b);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = lora->layers[i];
|
||||
randomize_tensor_normal(layer.attention_norm_a, rnd);
|
||||
randomize_tensor_normal(layer.attention_norm_b, rnd);
|
||||
ggml_set_zero(layer.attention_norm_b);
|
||||
|
||||
randomize_tensor_normal(layer.wq_a, rnd);
|
||||
randomize_tensor_normal(layer.wq_b, rnd);
|
||||
ggml_set_zero(layer.wq_b);
|
||||
randomize_tensor_normal(layer.wk_a, rnd);
|
||||
randomize_tensor_normal(layer.wk_b, rnd);
|
||||
ggml_set_zero(layer.wk_b);
|
||||
randomize_tensor_normal(layer.wv_a, rnd);
|
||||
randomize_tensor_normal(layer.wv_b, rnd);
|
||||
ggml_set_zero(layer.wv_b);
|
||||
randomize_tensor_normal(layer.wo_a, rnd);
|
||||
randomize_tensor_normal(layer.wo_b, rnd);
|
||||
ggml_set_zero(layer.wo_b);
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm_a, rnd);
|
||||
randomize_tensor_normal(layer.ffn_norm_b, rnd);
|
||||
ggml_set_zero(layer.ffn_norm_b);
|
||||
|
||||
randomize_tensor_normal(layer.w1_a, rnd);
|
||||
randomize_tensor_normal(layer.w1_b, rnd);
|
||||
ggml_set_zero(layer.w1_b);
|
||||
randomize_tensor_normal(layer.w2_a, rnd);
|
||||
randomize_tensor_normal(layer.w2_b, rnd);
|
||||
ggml_set_zero(layer.w2_b);
|
||||
randomize_tensor_normal(layer.w3_a, rnd);
|
||||
randomize_tensor_normal(layer.w3_b, rnd);
|
||||
ggml_set_zero(layer.w3_b);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
@ -1460,17 +1460,6 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par
|
||||
}
|
||||
params->n_rank_w3 = std::stoi(argv[i]);
|
||||
params->custom_n_rank_w3 = true;
|
||||
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params->common.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
train_print_usage(argc, argv, &default_params);
|
||||
|
@ -146,6 +146,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
return 0;
|
||||
}
|
||||
if (params.chatml) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'main' tool for chatml mode\n", __func__);
|
||||
printf("************\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
if (!params.antiprompt.empty()) {
|
||||
printf("\n************\n");
|
||||
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
|
||||
@ -230,7 +237,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
bool suff_rm_leading_spc = params.escape;
|
||||
|
@ -761,7 +761,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
|
||||
temp->ny = img->ny;
|
||||
temp->size = img->size;
|
||||
temp->data = new uint8_t[temp->size]();
|
||||
*temp->data = *img->data; // copy
|
||||
memcpy(&temp->data[0], &img->data[0], temp->size); // copy
|
||||
}
|
||||
|
||||
const int nx = temp->nx;
|
||||
|
@ -208,9 +208,10 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
|
||||
|
||||
// llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
|
||||
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, true);
|
||||
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, add_bos);
|
||||
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
||||
eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);
|
||||
|
||||
|
@ -127,7 +127,14 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
||||
fclose(file);
|
||||
return false;
|
||||
}
|
||||
fread(buffer, 1, fileSize, file); // Read the file into the buffer
|
||||
errno = 0;
|
||||
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
|
||||
if (ferror(file)) {
|
||||
die_fmt("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != (size_t) fileSize) {
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
fclose(file); // Close the file
|
||||
|
||||
*bytesOut = buffer;
|
||||
|
@ -237,13 +237,16 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG("tokenize the prompt\n");
|
||||
if (params.chatml) {
|
||||
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
|
||||
}
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
} else {
|
||||
LOG("use session tokens\n");
|
||||
@ -321,7 +324,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// number of tokens to keep when resetting context
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
|
||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
|
||||
params.n_keep = (int)embd_inp.size();
|
||||
}
|
||||
|
||||
@ -332,11 +335,23 @@ int main(int argc, char ** argv) {
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
||||
|
||||
// chatml prefix & suffix
|
||||
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
|
||||
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
|
||||
|
||||
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
|
||||
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
params.interactive_first = true;
|
||||
params.antiprompt.push_back("### Instruction:\n\n");
|
||||
}
|
||||
// similar for chatml mode
|
||||
else if (params.chatml) {
|
||||
params.interactive_first = true;
|
||||
params.antiprompt.push_back("<|im_start|>user\n");
|
||||
}
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
@ -713,7 +728,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
is_interacting = true;
|
||||
printf("\n");
|
||||
} else if (params.instruct) {
|
||||
} else if (params.instruct || params.chatml) {
|
||||
is_interacting = true;
|
||||
}
|
||||
}
|
||||
@ -721,7 +736,7 @@ int main(int argc, char ** argv) {
|
||||
if (n_past > 0 && is_interacting) {
|
||||
LOG("waiting for user input\n");
|
||||
|
||||
if (params.instruct) {
|
||||
if (params.instruct || params.chatml) {
|
||||
printf("\n> ");
|
||||
}
|
||||
|
||||
@ -768,6 +783,12 @@ int main(int argc, char ** argv) {
|
||||
n_consumed = embd_inp.size();
|
||||
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
||||
}
|
||||
// chatml mode: insert user chat prefix
|
||||
if (params.chatml && !is_antiprompt) {
|
||||
LOG("inserting chatml prefix\n");
|
||||
n_consumed = embd_inp.size();
|
||||
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
|
||||
}
|
||||
if (params.escape) {
|
||||
process_escapes(buffer);
|
||||
}
|
||||
@ -786,6 +807,11 @@ int main(int argc, char ** argv) {
|
||||
LOG("inserting instruction suffix\n");
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
}
|
||||
// chatml mode: insert assistant chat suffix
|
||||
if (params.chatml) {
|
||||
LOG("inserting chatml suffix\n");
|
||||
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
|
||||
}
|
||||
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
@ -811,7 +837,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive)) {
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
|
||||
LOG_TEE(" [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
// A basic application simulating a server with multiple clients.
|
||||
// The clients submite requests to the server and they are processed in parallel.
|
||||
// The clients submit requests to the server and they are processed in parallel.
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
@ -113,6 +113,8 @@ int main(int argc, char ** argv) {
|
||||
// insert new requests as soon as the previous one is done
|
||||
const bool cont_batching = params.cont_batching;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("parallel", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
@ -172,6 +174,8 @@ int main(int argc, char ** argv) {
|
||||
int32_t n_total_gen = 0;
|
||||
int32_t n_cache_miss = 0;
|
||||
|
||||
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
|
||||
@ -201,6 +205,11 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("Processing requests ...\n\n");
|
||||
|
||||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
|
@ -149,8 +149,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
@ -288,8 +287,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
@ -481,7 +479,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = is_spm;
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
// Number of tasks to use when computing the score
|
||||
if ( params.hellaswag_tasks < hs_task_count ) {
|
||||
|
@ -94,6 +94,10 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (result.error) {
|
||||
result.error = JSON.parse(result.error);
|
||||
console.error(`llama.cpp error: ${result.error.content}`);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -501,6 +501,7 @@ struct llama_server_context
|
||||
bool multimodal = false;
|
||||
bool clean_kv_cache = true;
|
||||
bool all_slots_are_idle = false;
|
||||
bool add_bos_token = true;
|
||||
|
||||
int32_t id_gen;
|
||||
int32_t n_ctx; // total context for all clients / slots
|
||||
@ -573,6 +574,8 @@ struct llama_server_context
|
||||
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
add_bos_token = llama_should_add_bos_token(model);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -864,7 +867,7 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
void update_system_prompt() {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
@ -1552,7 +1555,7 @@ struct llama_server_context
|
||||
}
|
||||
else
|
||||
{
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
||||
}
|
||||
|
||||
slot.num_prompt_tokens = prompt_tokens.size();
|
||||
@ -1629,7 +1632,7 @@ struct llama_server_context
|
||||
const bool has_images = process_images(slot);
|
||||
|
||||
// process the prefix of first image
|
||||
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
|
||||
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
||||
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
||||
{
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
|
||||
@ -2365,6 +2368,17 @@ int main(int argc, char **argv)
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const std::string str =
|
||||
"error: " +
|
||||
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
LOG_VERBOSE("data stream", {
|
||||
{ "to_send", str }
|
||||
});
|
||||
if (!sink.write(str.c_str(), str.size()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -94,9 +94,22 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
// Tokenize the prompt
|
||||
const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
|
||||
LOG("add_bos tgt: %d\n", add_bos_tgt);
|
||||
|
||||
const bool add_bos_dft = llama_should_add_bos_token(model_dft);
|
||||
LOG("add_bos dft: %d\n", add_bos_dft);
|
||||
|
||||
if (add_bos_tgt != add_bos_dft) {
|
||||
fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
|
||||
fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
|
||||
inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx_tgt);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
5
examples/tokenize/CMakeLists.txt
Normal file
5
examples/tokenize/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET tokenize)
|
||||
add_executable(${TARGET} tokenize.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
44
examples/tokenize/tokenize.cpp
Normal file
44
examples/tokenize/tokenize.cpp
Normal file
@ -0,0 +1,44 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * model_path = argv[1];
|
||||
const char * prompt = argv[2];
|
||||
|
||||
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
|
||||
|
||||
llama_backend_init(false);
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.vocab_only = true;
|
||||
llama_model * model = llama_load_model_from_file(model_path, model_params);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
|
||||
tokens = ::llama_tokenize(model, prompt, add_bos, true);
|
||||
|
||||
for (int i = 0; i < (int) tokens.size(); i++) {
|
||||
if (printing_ids) {
|
||||
printf("%d\n", tokens[i]);
|
||||
} else {
|
||||
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
229
ggml-cuda.cu
229
ggml-cuda.cu
@ -88,6 +88,8 @@
|
||||
#define CC_OFFSET_AMD 1000000
|
||||
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||
|
||||
#define GGML_CUDA_MAX_NODES 8192
|
||||
|
||||
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
|
||||
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
|
||||
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
|
||||
@ -233,7 +235,7 @@ typedef float2 dfloat2;
|
||||
#endif //GGML_CUDA_F16
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
|
||||
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
|
||||
int x32 = 0;
|
||||
x32 |= x16[0] << 0;
|
||||
@ -243,7 +245,7 @@ static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
|
||||
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||||
|
||||
int x32 = 0;
|
||||
x32 |= x16[0] << 0;
|
||||
@ -253,11 +255,11 @@ static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, con
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
|
||||
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
|
||||
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
@ -467,7 +469,7 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
|
||||
#define MUL_MAT_SRC1_COL_STRIDE 128
|
||||
|
||||
#define MAX_STREAMS 8
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr };
|
||||
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||
@ -2246,6 +2248,7 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
|
||||
@ -2257,7 +2260,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
|
||||
(void)x_qh; (void)x_sc;
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
GGML_CUDA_ASSUME(k >= 0);
|
||||
@ -2266,7 +2269,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_0;
|
||||
const int kqsx = k % QI4_0;
|
||||
|
||||
const block_q4_0 * bx0 = (block_q4_0 *) vx;
|
||||
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
||||
|
||||
float * x_dmf = (float *) x_dm;
|
||||
|
||||
@ -2304,9 +2307,10 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const float * x_dmf = (float *) x_dm;
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
|
||||
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
||||
|
||||
@ -2340,6 +2344,7 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
|
||||
@ -2351,6 +2356,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2360,7 +2366,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_1;
|
||||
const int kqsx = k % QI4_1;
|
||||
|
||||
const block_q4_1 * bx0 = (block_q4_1 *) vx;
|
||||
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2395,6 +2401,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
|
||||
@ -2432,6 +2439,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
|
||||
@ -2443,6 +2451,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2452,7 +2461,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_0;
|
||||
const int kqsx = k % QI5_0;
|
||||
|
||||
const block_q5_0 * bx0 = (block_q5_0 *) vx;
|
||||
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2507,6 +2516,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
||||
@ -2546,6 +2556,7 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
|
||||
@ -2557,6 +2568,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2566,7 +2578,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_1;
|
||||
const int kqsx = k % QI5_1;
|
||||
|
||||
const block_q5_1 * bx0 = (block_q5_1 *) vx;
|
||||
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2618,6 +2630,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
||||
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
||||
@ -2652,6 +2665,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
|
||||
@ -2663,6 +2677,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2673,7 +2688,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kqsx = k % QI8_0;
|
||||
float * x_dmf = (float *) x_dm;
|
||||
|
||||
const block_q8_0 * bx0 = (block_q8_0 *) vx;
|
||||
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2708,6 +2723,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh; (void)x_sc;
|
||||
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
@ -2741,6 +2757,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
|
||||
@ -2754,6 +2771,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -2763,7 +2781,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI2_K;
|
||||
const int kqsx = k % QI2_K;
|
||||
|
||||
const block_q2_K * bx0 = (block_q2_K *) vx;
|
||||
const block_q2_K * bx0 = (const block_q2_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2811,6 +2829,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const int kbx = k / QI2_K;
|
||||
const int ky = (k % QI2_K) * QR2_K;
|
||||
@ -2884,7 +2903,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI3_K;
|
||||
const int kqsx = k % QI3_K;
|
||||
|
||||
const block_q3_K * bx0 = (block_q3_K *) vx;
|
||||
const block_q3_K * bx0 = (const block_q3_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -2965,7 +2984,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
|
||||
const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
||||
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
||||
|
||||
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
||||
|
||||
@ -3080,6 +3099,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
|
||||
@ -3093,6 +3113,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3102,7 +3123,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
||||
|
||||
const block_q4_K * bx0 = (block_q4_K *) vx;
|
||||
const block_q4_K * bx0 = (const block_q4_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3147,7 +3168,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
||||
|
||||
const int * scales = (int *) bxi->scales;
|
||||
const int * scales = (const int *) bxi->scales;
|
||||
|
||||
const int ksc = k % (WARP_SIZE/8);
|
||||
|
||||
@ -3162,6 +3183,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
||||
|
||||
@ -3261,6 +3283,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
|
||||
@ -3274,6 +3297,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3283,7 +3307,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
||||
|
||||
const block_q5_K * bx0 = (block_q5_K *) vx;
|
||||
const block_q5_K * bx0 = (const block_q5_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3339,7 +3363,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
||||
|
||||
const int * scales = (int *) bxi->scales;
|
||||
const int * scales = (const int *) bxi->scales;
|
||||
|
||||
const int ksc = k % (WARP_SIZE/8);
|
||||
|
||||
@ -3354,6 +3378,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
||||
|
||||
@ -3390,6 +3415,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
||||
}
|
||||
|
||||
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
||||
(void)x_qh;
|
||||
|
||||
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
||||
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
|
||||
@ -3403,6 +3429,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(
|
||||
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
||||
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
||||
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
||||
(void)x_qh;
|
||||
|
||||
GGML_CUDA_ASSUME(i_offset >= 0);
|
||||
GGML_CUDA_ASSUME(i_offset < nwarps);
|
||||
@ -3412,7 +3439,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
||||
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
||||
|
||||
const block_q6_K * bx0 = (block_q6_K *) vx;
|
||||
const block_q6_K * bx0 = (const block_q6_K *) vx;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
||||
@ -3474,6 +3501,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
||||
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
||||
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
||||
(void)x_qh;
|
||||
|
||||
const float * x_dmf = (const float *) x_dm;
|
||||
const float * y_df = (const float *) y_ds;
|
||||
@ -3516,7 +3544,7 @@ static __device__ __forceinline__ void mul_mat_q(
|
||||
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
|
||||
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
|
||||
|
||||
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
|
||||
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
||||
|
||||
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
||||
|
||||
@ -4489,6 +4517,13 @@ static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||||
*dsti = __float2half(*xi);
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
half * dsti = (half *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
@ -4742,6 +4777,25 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static __global__ void im2col_f32_f16(
|
||||
const float * x, half * dst,
|
||||
int ofs0, int ofs1, int IW, int IH, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
|
||||
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
|
||||
|
||||
const int offset_dst =
|
||||
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
|
||||
(blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = __float2half(0.0f);
|
||||
} else {
|
||||
const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1;
|
||||
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
|
||||
}
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
@ -5642,6 +5696,16 @@ static void ggml_cpy_f32_f16_cuda(
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
}
|
||||
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||
@ -5725,6 +5789,15 @@ static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, c
|
||||
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_cuda(const float * x, half * dst,
|
||||
int OH, int IW, int IH, int OW, int IC,
|
||||
int KH, int KW, int N, int ofs0, int ofs1,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) {
|
||||
dim3 block_nums(IC, OH, OW);
|
||||
dim3 block_dims(N, KH, KW);
|
||||
im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
|
||||
// buffer pool for cuda
|
||||
#define MAX_CUDA_BUFFERS 256
|
||||
|
||||
@ -5793,7 +5866,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
return ptr;
|
||||
}
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
||||
fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
|
||||
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
||||
#endif
|
||||
void * ptr;
|
||||
@ -5931,7 +6004,7 @@ void * ggml_cuda_host_malloc(size_t size) {
|
||||
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
||||
// This can fixed the OOM error in WSL.
|
||||
cudaGetLastError();
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
|
||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
@ -5976,18 +6049,18 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
||||
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
|
||||
} else if (nb0 == ts) {
|
||||
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
||||
} else {
|
||||
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
||||
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||||
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
||||
// pretend the row is a matrix with cols=1
|
||||
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
||||
if (r != cudaSuccess) return r;
|
||||
}
|
||||
return cudaSuccess;
|
||||
}
|
||||
if (nb0 == ts) {
|
||||
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
||||
}
|
||||
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
||||
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||||
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
||||
// pretend the row is a matrix with cols=1
|
||||
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
||||
if (r != cudaSuccess) { return r; }
|
||||
}
|
||||
return cudaSuccess;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_repeat(
|
||||
@ -6309,6 +6382,7 @@ static int64_t get_row_rounding(ggml_type type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return 1;
|
||||
case GGML_TYPE_Q2_K:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
|
||||
@ -6331,6 +6405,7 @@ static int64_t get_row_rounding(ggml_type type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
return 64;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return 1;
|
||||
case GGML_TYPE_Q2_K:
|
||||
case GGML_TYPE_Q3_K:
|
||||
@ -6522,8 +6597,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
|
||||
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16;
|
||||
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
|
||||
size_t dst_as = 0;
|
||||
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
|
||||
|
||||
@ -6698,6 +6772,45 @@ inline void ggml_cuda_op_alibi(
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_im2col(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||||
|
||||
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||||
|
||||
const int64_t N = src1->ne[is_2D ? 3 : 2];
|
||||
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||||
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||||
const int64_t IW = src1->ne[0];
|
||||
|
||||
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||||
const int64_t KW = src0->ne[0];
|
||||
|
||||
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||||
const int64_t OW = dst->ne[1];
|
||||
|
||||
const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
|
||||
const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
|
||||
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd,
|
||||
OH, IW, IH, OW, IC, KH, KW, N,
|
||||
ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
|
||||
(void) src0;
|
||||
(void) src0_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_diag_mask_inf(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
@ -6902,7 +7015,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t nrows0 = ggml_nrows(src0);
|
||||
// const int64_t nrows0 = ggml_nrows(src0);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
@ -7003,7 +7116,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
if (src0_on_device && src0_is_contiguous) {
|
||||
src0_dd[id] = (char *) src0_extra->data_device[id];
|
||||
} else {
|
||||
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
||||
// const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
|
||||
src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
|
||||
}
|
||||
|
||||
@ -7236,7 +7349,7 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
|
||||
}
|
||||
|
||||
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
if (!g_cublas_loaded) { return false; }
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
@ -7314,7 +7427,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
||||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||||
}
|
||||
|
||||
__global__ void k_compute_batched_ptrs(
|
||||
__global__ static void k_compute_batched_ptrs(
|
||||
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
|
||||
const void ** ptrs_src, void ** ptrs_dst,
|
||||
int ne12, int ne13,
|
||||
@ -7610,6 +7723,9 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@ -7641,6 +7757,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||
}
|
||||
|
||||
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
||||
}
|
||||
|
||||
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
(void) src0;
|
||||
(void) src1;
|
||||
@ -7752,11 +7872,11 @@ static size_t g_temp_tensor_extra_index = 0;
|
||||
|
||||
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (g_temp_tensor_extras == nullptr) {
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
||||
}
|
||||
|
||||
size_t alloc_index = g_temp_tensor_extra_index;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
||||
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
@ -7923,7 +8043,7 @@ void ggml_cuda_free_scratch() {
|
||||
}
|
||||
|
||||
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
|
||||
if (!g_cublas_loaded) return false;
|
||||
if (!g_cublas_loaded) { return false; }
|
||||
|
||||
ggml_cuda_func_t func;
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
@ -7934,6 +8054,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_REPEAT:
|
||||
func = ggml_cuda_repeat;
|
||||
@ -8012,6 +8141,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_OP_ALIBI:
|
||||
func = ggml_cuda_alibi;
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
func = ggml_cuda_im2col;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@ -8071,11 +8203,11 @@ struct ggml_backend_buffer_context_cuda {
|
||||
|
||||
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (temp_tensor_extras == nullptr) {
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
|
||||
}
|
||||
|
||||
size_t alloc_index = temp_tensor_extra_index;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
|
||||
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
@ -8210,14 +8342,14 @@ static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backen
|
||||
UNUSED(cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
[[noreturn]] static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(!"not implemented");
|
||||
|
||||
UNUSED(backend);
|
||||
UNUSED(plan);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
[[noreturn]] static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(!"not implemented");
|
||||
|
||||
UNUSED(backend);
|
||||
@ -8233,8 +8365,9 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE) {
|
||||
continue;
|
||||
}
|
||||
assert(node->backend == GGML_BACKEND_GPU);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
|
@ -39,12 +39,6 @@ extern "C" {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
|
@ -26,7 +26,7 @@
|
||||
#include <stdbool.h>
|
||||
|
||||
// max memory buffers that can be mapped to the device
|
||||
#define GGML_METAL_MAX_BUFFERS 16
|
||||
#define GGML_METAL_MAX_BUFFERS 64
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
|
||||
|
||||
struct ggml_tensor;
|
||||
|
120
ggml-metal.m
120
ggml-metal.m
@ -86,6 +86,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -114,6 +115,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(rope_f32);
|
||||
GGML_METAL_DECL_KERNEL(rope_f16);
|
||||
GGML_METAL_DECL_KERNEL(alibi_f32);
|
||||
GGML_METAL_DECL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||
@ -126,7 +128,7 @@ struct ggml_metal_context {
|
||||
// MSL code
|
||||
// TODO: move the contents here when ready
|
||||
// for now it is easier to work in a separate file
|
||||
static NSString * const msl_library_source = @"see metal.metal";
|
||||
//static NSString * const msl_library_source = @"see metal.metal";
|
||||
|
||||
// Here to assist with NSBundle Path Hack
|
||||
@interface GGMLMetalClass : NSObject
|
||||
@ -142,7 +144,8 @@ void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_dat
|
||||
ggml_metal_log_user_data = user_data;
|
||||
}
|
||||
|
||||
static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
|
||||
GGML_ATTRIBUTE_FORMAT(2, 3)
|
||||
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
||||
if (ggml_metal_log_callback != NULL) {
|
||||
va_list args;
|
||||
va_start(args, format);
|
||||
@ -210,7 +213,13 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
||||
|
||||
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||
NSString * sourcePath;
|
||||
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
||||
if (ggmlMetalPathResources) {
|
||||
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
|
||||
} else {
|
||||
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||
}
|
||||
if (sourcePath == nil) {
|
||||
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
|
||||
sourcePath = @"ggml-metal.metal";
|
||||
@ -281,6 +290,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -311,6 +321,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(rope_f32);
|
||||
GGML_METAL_ADD_KERNEL(rope_f16);
|
||||
GGML_METAL_ADD_KERNEL(alibi_f32);
|
||||
GGML_METAL_ADD_KERNEL(im2col_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||
@ -329,15 +340,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
||||
if ([ctx->device supportsFamily:i]) {
|
||||
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
|
||||
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
@ -380,6 +391,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(rms_norm);
|
||||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
||||
@ -410,6 +422,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(rope_f32);
|
||||
GGML_METAL_DEL_KERNEL(rope_f16);
|
||||
GGML_METAL_DEL_KERNEL(alibi_f32);
|
||||
GGML_METAL_DEL_KERNEL(im2col_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||
@ -467,6 +480,10 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
|
||||
|
||||
const int64_t tsize = ggml_nbytes(t);
|
||||
|
||||
if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
|
||||
ctx = t->buffer->backend->context;
|
||||
}
|
||||
|
||||
// find the view that contains the tensor fully
|
||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
||||
@ -524,11 +541,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
|
||||
++ctx->n_buffers;
|
||||
} else {
|
||||
@ -548,11 +565,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||
if (i + size_step < size) {
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
@ -567,7 +584,7 @@ bool ggml_metal_add_buffer(
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
|
||||
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
||||
GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
||||
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
@ -1024,7 +1041,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:MAX(16, nth/32*sizeof(float)) atIndex:0];
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
@ -1133,6 +1150,7 @@ void ggml_metal_graph_compute(
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
|
||||
nrows = 4;
|
||||
} break;
|
||||
@ -1140,13 +1158,18 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
nth0 = 32;
|
||||
nth1 = 1;
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
if (src1t == GGML_TYPE_F32) {
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
||||
nrows = 4;
|
||||
}
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
|
||||
nrows = 4;
|
||||
}
|
||||
} break;
|
||||
@ -1336,7 +1359,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
||||
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
|
||||
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
@ -1355,7 +1378,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
||||
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:MAX(16, nth*sizeof(float)) atIndex:0];
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
|
||||
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
@ -1410,8 +1433,7 @@ void ggml_metal_graph_compute(
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
||||
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||
const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
|
||||
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
@ -1459,6 +1481,58 @@ void ggml_metal_graph_compute(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
||||
const int32_t IC = src1->ne[is_2D ? 2 : 1];
|
||||
const int32_t IH = is_2D ? src1->ne[1] : 1;
|
||||
const int32_t IW = src1->ne[0];
|
||||
|
||||
const int32_t KH = is_2D ? src0->ne[1] : 1;
|
||||
const int32_t KW = src0->ne[0];
|
||||
|
||||
const int32_t OH = is_2D ? dst->ne[2] : 1;
|
||||
const int32_t OW = dst->ne[1];
|
||||
|
||||
const int32_t CHW = IC * KH * KW;
|
||||
|
||||
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
|
||||
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
|
||||
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
|
||||
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
|
||||
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
|
||||
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
|
||||
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
|
||||
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
|
||||
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
|
||||
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
|
||||
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
|
||||
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
|
108
ggml-metal.metal
108
ggml-metal.metal
@ -792,7 +792,7 @@ kernel void kernel_mul_mv_f32_f32(
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t rb = tgpig.y*N_F32_F32;
|
||||
@ -844,6 +844,79 @@ kernel void kernel_mul_mv_f32_f32(
|
||||
}
|
||||
}
|
||||
|
||||
#define N_F16_F16 4
|
||||
|
||||
kernel void kernel_mul_mv_f16_f16(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t rb = tgpig.y*N_F16_F16;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00; i += 32) {
|
||||
sumf += (half) x[i] * (half) y[i];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
device const half4 * x4 = (device const half4 *)x;
|
||||
for (int row = 0; row < N_F16_F16; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
|
||||
device const half4 * y4 = (device const half4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mv_f16_f32_1row(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@ -1229,6 +1302,39 @@ kernel void kernel_rope(
|
||||
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
|
||||
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
device const float * x,
|
||||
device half * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
constant int32_t & IH,
|
||||
constant int32_t & CHW,
|
||||
constant int32_t & s0,
|
||||
constant int32_t & s1,
|
||||
constant int32_t & p0,
|
||||
constant int32_t & p1,
|
||||
constant int32_t & d0,
|
||||
constant int32_t & d1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tgpg[[threadgroups_per_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
|
||||
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
|
||||
|
||||
const int32_t offset_dst =
|
||||
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
||||
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
|
||||
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_cpy_f16_f16(
|
||||
device const half * src0,
|
||||
device half * dst,
|
||||
|
248
ggml-quants.c
248
ggml-quants.c
@ -14,32 +14,12 @@
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
@ -47,13 +27,15 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if !defined(__riscv) && !defined(__s390__)
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
@ -61,6 +43,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
@ -283,9 +266,31 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
|
||||
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 64-bit compatibility
|
||||
|
||||
// vaddvq_s16
|
||||
// vpaddq_s16
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
@ -311,6 +316,96 @@ inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@ -1273,7 +1368,12 @@ static float make_qkx2_quants(int n, int nmax, const float * restrict x, const f
|
||||
float max = x[0];
|
||||
float sum_w = weights[0];
|
||||
float sum_x = sum_w * x[0];
|
||||
#ifdef HAVE_BUGGY_APPLE_LINKER
|
||||
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
|
||||
for (volatile int i = 1; i < n; ++i) {
|
||||
#else
|
||||
for (int i = 1; i < n; ++i) {
|
||||
#endif
|
||||
if (x[i] < min) min = x[i];
|
||||
if (x[i] > max) max = x[i];
|
||||
float w = weights[i];
|
||||
@ -3557,7 +3657,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x2_t q2bytes;
|
||||
ggml_int8x16x2_t q2bytes;
|
||||
uint8_t aux[16];
|
||||
|
||||
float sum = 0;
|
||||
@ -3576,8 +3676,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
vst1q_u8(aux, scales);
|
||||
|
||||
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
|
||||
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
|
||||
const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
|
||||
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
|
||||
const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
|
||||
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
|
||||
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
|
||||
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
|
||||
@ -3605,7 +3705,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
#endif
|
||||
|
||||
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
|
||||
q8bytes = vld1q_s8_x2(q8); q8 += 32;\
|
||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
|
||||
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
|
||||
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
|
||||
MULTIPLY_ACCUM_WITH_SCALE((index));
|
||||
@ -3613,9 +3713,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
|
||||
const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
|
||||
const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
|
||||
|
||||
int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
|
||||
ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
|
||||
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
|
||||
MULTIPLY_ACCUM_WITH_SCALE(0);
|
||||
@ -3949,7 +4049,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q2bytes;
|
||||
ggml_int8x16x4_t q2bytes;
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * scales = (const uint8_t *)aux32;
|
||||
@ -3974,7 +4074,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const uint8x16_t q2bits = vld1q_u8(q2);
|
||||
|
||||
const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
|
||||
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
|
||||
|
||||
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
|
||||
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
|
||||
@ -4238,7 +4338,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const uint8x16_t m3 = vshlq_n_u8(m0, 3);
|
||||
const int8_t m32 = 32;
|
||||
|
||||
int8x16x4_t q3bytes;
|
||||
ggml_int8x16x4_t q3bytes;
|
||||
|
||||
float sum = 0;
|
||||
|
||||
@ -4250,9 +4350,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const uint8_t * restrict qh = x[i].hmask;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
uint8x16x2_t qhbits = vld1q_u8_x2(qh);
|
||||
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
|
||||
|
||||
uint8x16x4_t q3h;
|
||||
ggml_uint8x16x4_t q3h;
|
||||
|
||||
int32_t isum = 0;
|
||||
|
||||
@ -4268,9 +4368,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
|
||||
const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
|
||||
const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
|
||||
const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
|
||||
const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
|
||||
const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
|
||||
q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
|
||||
q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
|
||||
@ -4772,7 +4872,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const uint8x16_t m3b = vdupq_n_u8(0x3);
|
||||
const uint8x16_t mh = vdupq_n_u8(4);
|
||||
|
||||
int8x16x4_t q3bytes;
|
||||
ggml_int8x16x4_t q3bytes;
|
||||
|
||||
uint16_t aux16[2];
|
||||
int8_t * scales = (int8_t *)aux16;
|
||||
@ -4781,11 +4881,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
uint8x16x4_t q3h;
|
||||
ggml_uint8x16x4_t q3h;
|
||||
|
||||
const uint8x8_t hbits = vld1_u8(x[i].hmask);
|
||||
const uint8x16_t q3bits = vld1q_u8(x[i].qs);
|
||||
const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
|
||||
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
|
||||
|
||||
const uint16_t a = *(const uint16_t *)x[i].scales;
|
||||
aux16[0] = a & 0x0f0f;
|
||||
@ -5134,8 +5234,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x2_t q4bytes;
|
||||
int8x16x2_t q8bytes;
|
||||
ggml_int8x16x2_t q4bytes;
|
||||
ggml_int8x16x2_t q8bytes;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
@ -5170,17 +5270,17 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
|
||||
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
|
||||
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
|
||||
|
||||
#ifdef __ARM_FEATURE_DOTPROD
|
||||
q8bytes = vld1q_s8_x2(q8); q8 += 32;
|
||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||
|
||||
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
|
||||
sumi1 += vaddvq_s32(p1) * scales[2*j+0];
|
||||
|
||||
q8bytes = vld1q_s8_x2(q8); q8 += 32;
|
||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
|
||||
|
||||
@ -5188,7 +5288,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
|
||||
#else
|
||||
q8bytes = vld1q_s8_x2(q8); q8 += 32;
|
||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
||||
@ -5197,7 +5297,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
||||
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
|
||||
|
||||
q8bytes = vld1q_s8_x2(q8); q8 += 32;
|
||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
|
||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
||||
@ -5512,8 +5612,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
int8x16x2_t q4bytes;
|
||||
int8x16x4_t q8bytes;
|
||||
ggml_int8x16x2_t q4bytes;
|
||||
ggml_int8x16x4_t q8bytes;
|
||||
|
||||
float sum_mins = 0.f;
|
||||
|
||||
@ -5534,10 +5634,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const float d = y[i].d * (float)x[i].d[0];
|
||||
|
||||
const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
|
||||
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
|
||||
|
||||
#ifdef __ARM_FEATURE_DOTPROD
|
||||
q8bytes = vld1q_s8_x4(q8);
|
||||
q8bytes = ggml_vld1q_s8_x4(q8);
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||
|
||||
@ -5551,7 +5651,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
|
||||
|
||||
#else
|
||||
q8bytes = vld1q_s8_x4(q8);
|
||||
q8bytes = ggml_vld1q_s8_x4(q8);
|
||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
||||
@ -5785,7 +5885,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
ggml_int8x16x4_t q5bytes;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
@ -5815,16 +5915,16 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const uint8_t * restrict qh = x[i].qh;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
uint8x16x2_t qhbits = vld1q_u8_x2(qh);
|
||||
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
|
||||
|
||||
uint8x16x4_t q5h;
|
||||
ggml_uint8x16x4_t q5h;
|
||||
|
||||
int32_t sumi = 0;
|
||||
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
|
||||
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
|
||||
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
|
||||
const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
|
||||
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
|
||||
q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
|
||||
q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
|
||||
@ -6218,8 +6318,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
uint8x16x4_t q5h;
|
||||
ggml_int8x16x4_t q5bytes;
|
||||
ggml_uint8x16x4_t q5h;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
@ -6234,8 +6334,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const uint8x8_t qhbits = vld1_u8(qh);
|
||||
|
||||
const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
|
||||
const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
|
||||
const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
|
||||
const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
|
||||
|
||||
const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
|
||||
q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
|
||||
@ -6511,8 +6611,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
|
||||
int8x16x4_t q6bytes;
|
||||
uint8x16x4_t q6h;
|
||||
ggml_int8x16x4_t q6bytes;
|
||||
ggml_uint8x16x4_t q6h;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
@ -6524,9 +6624,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const int8_t * restrict scale = x[i].scales;
|
||||
|
||||
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
|
||||
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
|
||||
const int8x16_t scales = vld1q_s8(scale);
|
||||
const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
|
||||
const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
|
||||
|
||||
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
|
||||
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
|
||||
@ -6538,9 +6638,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
|
||||
uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
|
||||
uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
|
||||
int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
|
||||
ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
|
||||
ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
|
||||
ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
|
||||
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
|
||||
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
|
||||
@ -6583,7 +6683,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
scale += 2;
|
||||
#endif
|
||||
|
||||
q8bytes = vld1q_s8_x4(q8); q8 += 64;
|
||||
q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
|
||||
shifted = vshrq_n_u8(qhbits.val[0], 4);
|
||||
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
|
||||
@ -6987,8 +7087,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
|
||||
int8x16x4_t q6bytes;
|
||||
uint8x16x4_t q6h;
|
||||
ggml_int8x16x4_t q6bytes;
|
||||
ggml_uint8x16x4_t q6h;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
@ -7002,9 +7102,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
int32_t isum = 0;
|
||||
|
||||
uint8x16_t qhbits = vld1q_u8(qh);
|
||||
uint8x16x2_t q6bits = vld1q_u8_x2(q6);
|
||||
int8x16x4_t q8bytes = vld1q_s8_x4(q8);
|
||||
uint8x16_t qhbits = vld1q_u8(qh);
|
||||
ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
|
||||
ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
|
||||
|
||||
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
|
||||
uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
|
||||
|
20
ggml.h
20
ggml.h
@ -403,13 +403,8 @@ extern "C" {
|
||||
GGML_OP_ROPE_BACK,
|
||||
GGML_OP_ALIBI,
|
||||
GGML_OP_CLAMP,
|
||||
GGML_OP_CONV_1D,
|
||||
GGML_OP_CONV_1D_STAGE_0, // internal
|
||||
GGML_OP_CONV_1D_STAGE_1, // internal
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_2D_STAGE_0, // internal
|
||||
GGML_OP_CONV_2D_STAGE_1, // internal
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
@ -1403,6 +1398,18 @@ extern "C" {
|
||||
float min,
|
||||
float max);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_im2col(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -2038,6 +2045,7 @@ extern "C" {
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
||||
|
@ -56,20 +56,21 @@ class Keys:
|
||||
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
||||
|
||||
class Tokenizer:
|
||||
MODEL = "tokenizer.ggml.model"
|
||||
LIST = "tokenizer.ggml.tokens"
|
||||
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||
SCORES = "tokenizer.ggml.scores"
|
||||
MERGES = "tokenizer.ggml.merges"
|
||||
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||
HF_JSON = "tokenizer.huggingface.json"
|
||||
RWKV = "tokenizer.rwkv.world"
|
||||
MODEL = "tokenizer.ggml.model"
|
||||
LIST = "tokenizer.ggml.tokens"
|
||||
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
||||
SCORES = "tokenizer.ggml.scores"
|
||||
MERGES = "tokenizer.ggml.merges"
|
||||
BOS_ID = "tokenizer.ggml.bos_token_id"
|
||||
EOS_ID = "tokenizer.ggml.eos_token_id"
|
||||
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
||||
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
||||
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||
HF_JSON = "tokenizer.huggingface.json"
|
||||
RWKV = "tokenizer.rwkv.world"
|
||||
CHAT_TEMPLATE = "tokenizer.chat_template"
|
||||
|
||||
|
||||
#
|
||||
@ -90,6 +91,7 @@ class MODEL_ARCH(IntEnum):
|
||||
REFACT = auto()
|
||||
BERT = auto()
|
||||
BLOOM = auto()
|
||||
STABLELM = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
@ -129,6 +131,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
@ -299,6 +302,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.STABLELM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GPT2: [
|
||||
# TODO
|
||||
],
|
||||
|
@ -221,7 +221,7 @@ class GGUFWriter:
|
||||
if self.endianess == GGUFEndian.BIG:
|
||||
tensor.byteswap(inplace=True)
|
||||
if self.use_temp_file and self.temp_file is None:
|
||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
|
||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
|
||||
fp.seek(0)
|
||||
self.temp_file = fp
|
||||
|
||||
@ -399,6 +399,9 @@ class GGUFWriter:
|
||||
def add_add_eos_token(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
|
||||
|
||||
def add_chat_template(self, value: str) -> None:
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
|
@ -13,6 +13,7 @@ class SpecialVocab:
|
||||
merges: list[str]
|
||||
add_special_token: dict[str, bool]
|
||||
special_token_ids: dict[str, int]
|
||||
chat_template: str | None
|
||||
|
||||
def __init__(
|
||||
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||
@ -24,6 +25,7 @@ class SpecialVocab:
|
||||
self.n_vocab = n_vocab
|
||||
self.load_merges = load_merges
|
||||
self.merges = []
|
||||
self.chat_template = None
|
||||
if special_token_types is not None:
|
||||
self.special_token_types = special_token_types
|
||||
else:
|
||||
@ -67,6 +69,10 @@ class SpecialVocab:
|
||||
if not quiet:
|
||||
print(f'gguf: Setting add_{typ}_token to {value}')
|
||||
add_handler(value)
|
||||
if self.chat_template is not None:
|
||||
if not quiet:
|
||||
print(f'gguf: Setting chat_template to {self.chat_template}')
|
||||
gw.add_chat_template(self.chat_template)
|
||||
|
||||
def _load(self, path: Path) -> None:
|
||||
self._try_load_from_tokenizer_json(path)
|
||||
@ -117,24 +123,37 @@ class SpecialVocab:
|
||||
|
||||
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||
tokenizer_file = path / 'tokenizer.json'
|
||||
if not tokenizer_file.is_file():
|
||||
return False
|
||||
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||
tokenizer = json.load(f)
|
||||
if self.load_merges:
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and merges and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
if tokenizer_file.is_file():
|
||||
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||
tokenizer = json.load(f)
|
||||
if self.load_merges:
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and merges and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
added_tokens = tokenizer.get('added_tokens', {})
|
||||
else:
|
||||
added_tokens = {}
|
||||
tokenizer_config_file = path / 'tokenizer_config.json'
|
||||
added_tokens = tokenizer.get('added_tokens')
|
||||
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||
if not tokenizer_config_file.is_file():
|
||||
return True
|
||||
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
chat_template = tokenizer_config.get('chat_template')
|
||||
if chat_template is None or isinstance(chat_template, str):
|
||||
self.chat_template = chat_template
|
||||
else:
|
||||
print(
|
||||
f'gguf: WARNING: Bad type for chat_template field in {tokenizer_config_file!r} - ignoring',
|
||||
file = sys.stderr
|
||||
)
|
||||
for typ in self.special_token_types:
|
||||
add_entry = tokenizer_config.get(f'add_{typ}_token')
|
||||
if isinstance(add_entry, bool):
|
||||
self.add_special_token[typ] = add_entry
|
||||
if not added_tokens:
|
||||
# We will need this to get the content for the token, so if it's empty
|
||||
# may as well just give up.
|
||||
continue
|
||||
entry = tokenizer_config.get(f'{typ}_token')
|
||||
if isinstance(entry, str):
|
||||
tc_content = entry
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "gguf"
|
||||
version = "0.5.2"
|
||||
version = "0.6.0"
|
||||
description = "Read and write ML models in GGUF for GGML"
|
||||
authors = ["GGML <ggml@ggml.ai>"]
|
||||
packages = [
|
||||
|
@ -86,13 +86,14 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
|
||||
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
|
||||
else:
|
||||
curr["value"] = field.parts[-1].tolist()[0]
|
||||
for idx, tensor in enumerate(reader.tensors):
|
||||
tensors[tensor.name] = {
|
||||
"index": idx,
|
||||
"shape": tensor.shape.tolist(),
|
||||
"type": tensor.tensor_type.name,
|
||||
"offset": tensor.field.offset,
|
||||
}
|
||||
if not args.no_tensors:
|
||||
for idx, tensor in enumerate(reader.tensors):
|
||||
tensors[tensor.name] = {
|
||||
"index": idx,
|
||||
"shape": tensor.shape.tolist(),
|
||||
"type": tensor.tensor_type.name,
|
||||
"offset": tensor.field.offset,
|
||||
}
|
||||
json.dump(result, sys.stdout)
|
||||
|
||||
|
||||
|
557
llama.cpp
557
llama.cpp
@ -93,7 +93,7 @@
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_NODES 4096
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
|
||||
//
|
||||
// logging
|
||||
@ -194,6 +194,7 @@ enum llm_arch {
|
||||
LLM_ARCH_PERSIMMON,
|
||||
LLM_ARCH_REFACT,
|
||||
LLM_ARCH_BLOOM,
|
||||
LLM_ARCH_STABLELM,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
@ -209,6 +210,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_PERSIMMON, "persimmon" },
|
||||
{ LLM_ARCH_REFACT, "refact" },
|
||||
{ LLM_ARCH_BLOOM, "bloom" },
|
||||
{ LLM_ARCH_STABLELM, "stablelm" },
|
||||
};
|
||||
|
||||
enum llm_kv {
|
||||
@ -255,6 +257,8 @@ enum llm_kv {
|
||||
LLM_KV_TOKENIZER_UNK_ID,
|
||||
LLM_KV_TOKENIZER_SEP_ID,
|
||||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
};
|
||||
@ -303,6 +307,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
||||
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
|
||||
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
|
||||
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
|
||||
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
};
|
||||
@ -497,6 +503,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_STABLELM,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@ -581,6 +606,60 @@ static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
|
||||
return LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||
}
|
||||
|
||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||
switch (type) {
|
||||
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
||||
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
||||
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
||||
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
||||
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
||||
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
||||
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
||||
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
||||
default: return format("unknown type %d", type);
|
||||
}
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(struct gguf_context * ctx_gguf, int i) {
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
|
||||
switch (type) {
|
||||
case GGUF_TYPE_STRING:
|
||||
return gguf_get_val_str(ctx_gguf, i);
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
if (arr_type == GGUF_TYPE_STRING) {
|
||||
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
|
||||
// escape quotes
|
||||
replace_all(val, "\\", "\\\\");
|
||||
replace_all(val, "\"", "\\\"");
|
||||
ss << '"' << val << '"';
|
||||
} else if (arr_type == GGUF_TYPE_ARRAY) {
|
||||
ss << "???";
|
||||
} else {
|
||||
ss << gguf_data_to_str(arr_type, data, j);
|
||||
}
|
||||
if (j < arr_n - 1) {
|
||||
ss << ", ";
|
||||
}
|
||||
}
|
||||
ss << "]";
|
||||
return ss.str();
|
||||
}
|
||||
default:
|
||||
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// ggml helpers
|
||||
//
|
||||
@ -1082,9 +1161,9 @@ enum e_model {
|
||||
MODEL_70B,
|
||||
};
|
||||
|
||||
static const size_t kB = 1024;
|
||||
static const size_t MB = 1024*kB;
|
||||
static const size_t GB = 1024*MB;
|
||||
static const size_t kiB = 1024;
|
||||
static const size_t MiB = 1024*kiB;
|
||||
static const size_t GiB = 1024*MiB;
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
@ -1221,6 +1300,7 @@ struct llama_kv_cache {
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||
|
||||
// computed before each graph build
|
||||
uint32_t n = 0;
|
||||
@ -1275,6 +1355,9 @@ struct llama_vocab {
|
||||
id special_sep_id = -1;
|
||||
id special_pad_id = -1;
|
||||
|
||||
int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
|
||||
id linefeed_id = 13;
|
||||
id special_prefix_id = 32007;
|
||||
id special_middle_id = 32009;
|
||||
@ -1319,6 +1402,9 @@ struct llama_model {
|
||||
|
||||
int n_gpu_layers;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
|
||||
// context
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
@ -1442,6 +1528,7 @@ static bool llama_kv_cache_init(
|
||||
|
||||
cache.head = 0;
|
||||
cache.size = n_ctx;
|
||||
cache.used = 0;
|
||||
|
||||
cache.cells.clear();
|
||||
cache.cells.resize(n_ctx);
|
||||
@ -1483,7 +1570,7 @@ static bool llama_kv_cache_init(
|
||||
vram_kv_cache += ggml_nbytes(cache.k);
|
||||
}
|
||||
if (vram_kv_cache > 0) {
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -1543,6 +1630,8 @@ static bool llama_kv_cache_find_slot(
|
||||
}
|
||||
}
|
||||
|
||||
cache.used += n_tokens;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1563,6 +1652,7 @@ static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
|
||||
cache.cells[i].seq_id.clear();
|
||||
}
|
||||
cache.head = 0;
|
||||
cache.used = 0;
|
||||
}
|
||||
|
||||
static void llama_kv_cache_seq_rm(
|
||||
@ -1585,6 +1675,9 @@ static void llama_kv_cache_seq_rm(
|
||||
continue;
|
||||
}
|
||||
if (cache.cells[i].seq_id.empty()) {
|
||||
// keep count of the number of used cells
|
||||
if (cache.cells[i].pos >= 0) cache.used--;
|
||||
|
||||
cache.cells[i].pos = -1;
|
||||
if (new_head == cache.size) new_head = i;
|
||||
}
|
||||
@ -1592,7 +1685,7 @@ static void llama_kv_cache_seq_rm(
|
||||
}
|
||||
|
||||
// If we freed up a slot, set head to it so searching can start there.
|
||||
if (new_head != cache.size) cache.head = new_head;
|
||||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||||
}
|
||||
|
||||
static void llama_kv_cache_seq_cp(
|
||||
@ -1618,6 +1711,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
|
||||
|
||||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||||
if (!cache.cells[i].has_seq_id(seq_id)) {
|
||||
if (cache.cells[i].pos >= 0) cache.used--;
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) new_head = i;
|
||||
@ -1628,7 +1722,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
|
||||
}
|
||||
|
||||
// If we freed up a slot, set head to it so searching can start there.
|
||||
if (new_head != cache.size) cache.head = new_head;
|
||||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||||
}
|
||||
|
||||
static void llama_kv_cache_seq_shift(
|
||||
@ -1649,6 +1743,7 @@ static void llama_kv_cache_seq_shift(
|
||||
cache.cells[i].delta += delta;
|
||||
|
||||
if (cache.cells[i].pos < 0) {
|
||||
if (!cache.cells[i].seq_id.empty()) cache.used--;
|
||||
cache.cells[i].pos = -1;
|
||||
cache.cells[i].seq_id.clear();
|
||||
if (new_head == cache.size) new_head = i;
|
||||
@ -1780,10 +1875,10 @@ struct llama_model_loader {
|
||||
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
|
||||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
default:
|
||||
{
|
||||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||||
ftype = LLAMA_FTYPE_ALL_F32;
|
||||
} break;
|
||||
{
|
||||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||||
ftype = LLAMA_FTYPE_ALL_F32;
|
||||
} break;
|
||||
}
|
||||
|
||||
// this is a way to mark that we have "guessed" the file type
|
||||
@ -1797,10 +1892,21 @@ struct llama_model_loader {
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_kv; i++) {
|
||||
const char * name = gguf_get_key(ctx_gguf, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
const char * name = gguf_get_key(ctx_gguf, i);
|
||||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||||
const std::string type_name =
|
||||
type == GGUF_TYPE_ARRAY
|
||||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
|
||||
: gguf_type_name(type);
|
||||
|
||||
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
|
||||
std::string value = gguf_kv_to_str(ctx_gguf, i);
|
||||
const size_t MAX_VALUE_LEN = 40;
|
||||
if (value.size() > MAX_VALUE_LEN) {
|
||||
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
|
||||
}
|
||||
replace_all(value, "\n", "\\n");
|
||||
|
||||
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||||
}
|
||||
|
||||
// print type counts
|
||||
@ -2098,6 +2204,17 @@ static void llm_load_hparams(
|
||||
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
// get metadata as string
|
||||
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
|
||||
enum gguf_type type = gguf_get_kv_type(ctx, i);
|
||||
if (type == GGUF_TYPE_ARRAY) {
|
||||
continue;
|
||||
}
|
||||
const char * name = gguf_get_key(ctx, i);
|
||||
const std::string value = gguf_kv_to_str(ctx, i);
|
||||
model.gguf_kv.emplace(name, value);
|
||||
}
|
||||
|
||||
// get general kv
|
||||
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
|
||||
|
||||
@ -2242,6 +2359,16 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_STABLELM:
|
||||
{
|
||||
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
@ -2383,6 +2510,23 @@ static void llm_load_vocab(
|
||||
__func__, key.c_str(), id, old_id);
|
||||
id = old_id;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Handle add_bos_token and add_eos_token
|
||||
std::string key = kv(LLM_KV_TOKENIZER_ADD_BOS);
|
||||
int kid = gguf_find_key(ctx, key.c_str());
|
||||
enum gguf_type ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
|
||||
vocab.special_add_bos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
|
||||
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
|
||||
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
|
||||
}
|
||||
key = kv(LLM_KV_TOKENIZER_ADD_EOS);
|
||||
kid = gguf_find_key(ctx, key.c_str());
|
||||
ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
|
||||
vocab.special_add_eos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
|
||||
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
|
||||
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@ -2514,8 +2658,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||||
if (ml.n_bytes < GB) {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
if (ml.n_bytes < GiB) {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
} else {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
}
|
||||
@ -2553,7 +2697,7 @@ static void llm_load_tensors(
|
||||
|
||||
ml.calc_sizes(ctx_size, mmapped_size);
|
||||
|
||||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
@ -3113,6 +3257,81 @@ static void llm_load_tensors(
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_STABLELM:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||
|
||||
// output
|
||||
{
|
||||
ggml_backend_type backend_norm;
|
||||
ggml_backend_type backend_output;
|
||||
|
||||
if (n_gpu_layers > int(n_layer)) {
|
||||
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
|
||||
// on Windows however this is detrimental unless everything is on the GPU
|
||||
#ifndef _WIN32
|
||||
backend_norm = llama_backend_offload;
|
||||
#else
|
||||
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
|
||||
#endif // _WIN32
|
||||
|
||||
backend_output = llama_backend_offload_split;
|
||||
} else {
|
||||
backend_norm = GGML_BACKEND_CPU;
|
||||
backend_output = GGML_BACKEND_CPU;
|
||||
}
|
||||
|
||||
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
|
||||
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
|
||||
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
|
||||
|
||||
if (backend_norm == GGML_BACKEND_GPU) {
|
||||
vram_weights += ggml_nbytes(model.output_norm);
|
||||
}
|
||||
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
|
||||
vram_weights += ggml_nbytes(model.output);
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
/*
|
||||
llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ]
|
||||
*/
|
||||
const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
|
||||
const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
|
||||
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
|
||||
|
||||
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
vram_weights +=
|
||||
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
|
||||
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
@ -3127,7 +3346,7 @@ static void llm_load_tensors(
|
||||
ctx_size +
|
||||
mmapped_size - vram_weights; // weights in VRAM not in memory
|
||||
|
||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
@ -3146,7 +3365,7 @@ static void llm_load_tensors(
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||||
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
@ -4657,6 +4876,119 @@ struct llm_build_context {
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_stablelm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_scale
|
||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||
cb(KQ_scale, "KQ_scale", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, hparams.n_rot, freq_base, freq_scale, cb);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm,
|
||||
model.layers[il].attn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
|
||||
|
||||
cur = llm_build_kqv(ctx0, hparams, kv_self,
|
||||
model.layers[il].wo, NULL,
|
||||
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm,
|
||||
model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm,
|
||||
model.output_norm_b,
|
||||
LLM_NORM, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@ -5126,6 +5458,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_mpt();
|
||||
} break;
|
||||
case LLM_ARCH_STABLELM:
|
||||
{
|
||||
result = llm.build_stablelm();
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -5235,6 +5571,12 @@ static int llama_decode_internal(
|
||||
batch.seq_id = seq_id_arr.data();
|
||||
}
|
||||
|
||||
// if we have enough unused cells before the current head ->
|
||||
// better to start searching from the beginning of the cache, hoping to fill it
|
||||
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
||||
kv_self.head = 0;
|
||||
}
|
||||
|
||||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||||
return 1;
|
||||
}
|
||||
@ -5245,7 +5587,7 @@ static int llama_decode_internal(
|
||||
//kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
|
||||
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
|
||||
|
||||
//printf("kv_self.n = %d\n", kv_self.n);
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||
|
||||
ggml_allocr_reset(lctx.alloc);
|
||||
|
||||
@ -5301,7 +5643,8 @@ static int llama_decode_internal(
|
||||
model.arch == LLM_ARCH_FALCON ||
|
||||
model.arch == LLM_ARCH_REFACT ||
|
||||
model.arch == LLM_ARCH_MPT ||
|
||||
model.arch == LLM_ARCH_STARCODER;
|
||||
model.arch == LLM_ARCH_STARCODER ||
|
||||
model.arch == LLM_ARCH_STABLELM;
|
||||
|
||||
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
|
||||
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
|
||||
@ -6110,7 +6453,10 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
||||
// by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
|
||||
// and passing 'add space prefix' as bool argument
|
||||
//
|
||||
auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
if (&fragment == &fragment_buffer.front()) {
|
||||
raw_text = " " + raw_text; // prefix with space if the first token is not special
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
@ -7762,7 +8108,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
int64_t tot_count = 0;
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
hist_all[i] += hist_cur[i];
|
||||
@ -8309,7 +8655,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
// resized during inference
|
||||
@ -8354,7 +8700,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
// measure memory requirements for the graph
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
||||
|
||||
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||
|
||||
// recreate allocator with exact memory requirements
|
||||
ggml_allocr_free(ctx->alloc);
|
||||
@ -8368,7 +8714,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
#endif
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
ggml_cuda_set_scratch_size(alloc_size);
|
||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||
|
||||
// calculate total VRAM usage
|
||||
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
|
||||
@ -8388,10 +8734,10 @@ struct llama_context * llama_new_context_with_model(
|
||||
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
||||
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
||||
|
||||
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
|
||||
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
|
||||
total_vram_size / 1024.0 / 1024.0,
|
||||
model_vram_size / 1024.0 / 1024.0,
|
||||
ctx_vram_size / 1024.0 / 1024.0);
|
||||
ctx_vram_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -8412,7 +8758,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||
|
||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
|
||||
|
||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||
if (!(result)) { \
|
||||
@ -8498,6 +8844,45 @@ float llama_rope_freq_scale_train(const struct llama_model * model) {
|
||||
return model->hparams.rope_freq_scale_train;
|
||||
}
|
||||
|
||||
int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
|
||||
const auto & it = model->gguf_kv.find(key);
|
||||
if (it == model->gguf_kv.end()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||||
}
|
||||
|
||||
int llama_model_meta_count(const struct llama_model * model) {
|
||||
return (int)model->gguf_kv.size();
|
||||
}
|
||||
|
||||
int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
|
||||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
auto it = model->gguf_kv.begin();
|
||||
std::advance(it, i);
|
||||
return snprintf(buf, buf_size, "%s", it->first.c_str());
|
||||
}
|
||||
|
||||
int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
|
||||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||||
if (buf_size > 0) {
|
||||
buf[0] = '\0';
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
auto it = model->gguf_kv.begin();
|
||||
std::advance(it, i);
|
||||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||||
}
|
||||
|
||||
int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
|
||||
return snprintf(buf, buf_size, "%s %s %s",
|
||||
llama_model_arch_name(model->arch).c_str(),
|
||||
@ -8556,8 +8941,107 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
|
||||
struct llama_kv_cache_view result = {
|
||||
/*.n_cells = */ 0,
|
||||
/*.n_max_seq = */ n_max_seq,
|
||||
/*.token_count = */ 0,
|
||||
/*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
|
||||
/*.max_contiguous = */ 0,
|
||||
/*.max_contiguous_idx = */ -1,
|
||||
/*.cells = */ nullptr,
|
||||
/*.cells_sequences = */ nullptr,
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
|
||||
if (view->cells != nullptr) {
|
||||
free(view->cells);
|
||||
view->cells = nullptr;
|
||||
}
|
||||
if (view->cells_sequences != nullptr) {
|
||||
free(view->cells_sequences);
|
||||
view->cells_sequences = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
|
||||
if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
|
||||
view->n_cells = int32_t(ctx->kv_self.size);
|
||||
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
|
||||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
|
||||
view->cells = (struct llama_kv_cache_view_cell *)p;
|
||||
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
|
||||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
|
||||
view->cells_sequences = (llama_seq_id *)p;
|
||||
}
|
||||
|
||||
const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
|
||||
llama_kv_cache_view_cell * c_curr = view->cells;
|
||||
llama_seq_id * cs_curr = view->cells_sequences;
|
||||
int32_t used_cells = 0;
|
||||
int32_t token_count = 0;
|
||||
int32_t curr_contig_idx = -1;
|
||||
uint32_t max_contig = 0;
|
||||
int32_t max_contig_idx = -1;
|
||||
|
||||
for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
|
||||
const size_t curr_size = kv_cells[i].seq_id.size();
|
||||
token_count += curr_size;
|
||||
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
|
||||
|
||||
if (curr_size > 0) {
|
||||
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
|
||||
max_contig = i - curr_contig_idx;
|
||||
max_contig_idx = curr_contig_idx;
|
||||
}
|
||||
curr_contig_idx = -1;
|
||||
} else if (curr_contig_idx < 0) {
|
||||
curr_contig_idx = i;
|
||||
}
|
||||
|
||||
int seq_idx = 0;
|
||||
for (const llama_seq_id it : kv_cells[i].seq_id) {
|
||||
if (seq_idx >= view->n_max_seq) {
|
||||
break;
|
||||
}
|
||||
cs_curr[seq_idx] = it;
|
||||
seq_idx++;
|
||||
}
|
||||
if (seq_idx != 0) {
|
||||
used_cells++;
|
||||
}
|
||||
for (; seq_idx < view->n_max_seq; seq_idx++) {
|
||||
cs_curr[seq_idx] = -1;
|
||||
}
|
||||
}
|
||||
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
|
||||
max_contig_idx = curr_contig_idx;
|
||||
max_contig = kv_cells.size() - curr_contig_idx;
|
||||
}
|
||||
view->max_contiguous = max_contig;
|
||||
view->max_contiguous_idx = max_contig_idx;
|
||||
view->token_count = token_count;
|
||||
view->used_cells = used_cells;
|
||||
if (uint32_t(used_cells) != ctx->kv_self.used) {
|
||||
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
|
||||
__func__, ctx->kv_self.used, used_cells);
|
||||
}
|
||||
}
|
||||
|
||||
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
||||
return ctx->kv_self.head;
|
||||
int result = 0;
|
||||
|
||||
for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
|
||||
result += ctx->kv_self.cells[i].seq_id.size();
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
int llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
|
||||
return ctx->kv_self.used;
|
||||
}
|
||||
|
||||
void llama_kv_cache_clear(struct llama_context * ctx) {
|
||||
@ -8727,10 +9211,12 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
||||
const size_t kv_buf_size = kv_self.buf.size;
|
||||
const uint32_t kv_head = kv_self.head;
|
||||
const uint32_t kv_size = kv_self.size;
|
||||
const uint32_t kv_used = kv_self.used;
|
||||
|
||||
data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
|
||||
data_ctx->write(&kv_head, sizeof(kv_head));
|
||||
data_ctx->write(&kv_size, sizeof(kv_size));
|
||||
data_ctx->write(&kv_used, sizeof(kv_used));
|
||||
|
||||
if (kv_buf_size) {
|
||||
const size_t elt_size = ggml_element_size(kv_self.k);
|
||||
@ -8853,10 +9339,12 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
size_t kv_buf_size;
|
||||
uint32_t kv_head;
|
||||
uint32_t kv_size;
|
||||
uint32_t kv_used;
|
||||
|
||||
memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
|
||||
memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
|
||||
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
|
||||
memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
|
||||
|
||||
if (kv_buf_size) {
|
||||
GGML_ASSERT(kv_self.buf.size == kv_buf_size);
|
||||
@ -8891,6 +9379,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
|
||||
ctx->kv_self.head = kv_head;
|
||||
ctx->kv_self.size = kv_size;
|
||||
ctx->kv_self.used = kv_used;
|
||||
|
||||
ctx->kv_self.cells.resize(kv_size);
|
||||
|
||||
@ -9139,6 +9628,14 @@ llama_token llama_token_nl(const struct llama_model * model) {
|
||||
return model->vocab.linefeed_id;
|
||||
}
|
||||
|
||||
int llama_add_bos_token(const struct llama_model * model) {
|
||||
return model->vocab.special_add_bos;
|
||||
}
|
||||
|
||||
int llama_add_eos_token(const struct llama_model * model) {
|
||||
return model->vocab.special_add_eos;
|
||||
}
|
||||
|
||||
llama_token llama_token_prefix(const struct llama_model * model) {
|
||||
return model->vocab.special_prefix_id;
|
||||
}
|
||||
|
80
llama.h
80
llama.h
@ -301,6 +301,23 @@ extern "C" {
|
||||
// Get the model's RoPE frequency scaling factor
|
||||
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||
|
||||
// Functions to access the model's GGUF metadata scalar values
|
||||
// - The functions return the length of the string on success, or -1 on failure
|
||||
// - The output string is always null-terminated and cleared on failure
|
||||
// - GGUF array values are not supported by these functions
|
||||
|
||||
// Get metadata value as a string by key name
|
||||
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
|
||||
|
||||
// Get the number of metadata key/value pairs
|
||||
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
|
||||
|
||||
// Get metadata key name by index
|
||||
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
|
||||
|
||||
// Get metadata value as a string by index
|
||||
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
|
||||
|
||||
// Get a string describing the model type
|
||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||
|
||||
@ -344,9 +361,60 @@ extern "C" {
|
||||
// KV cache
|
||||
//
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
|
||||
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
||||
// Information associated with an individual cell in the KV cache view.
|
||||
struct llama_kv_cache_view_cell {
|
||||
// The position for this cell. Takes KV cache shifts into account.
|
||||
// May be negative if the cell is not populated.
|
||||
llama_pos pos;
|
||||
};
|
||||
|
||||
// An updateable view of the KV cache.
|
||||
struct llama_kv_cache_view {
|
||||
// Number of KV cache cells. This will be the same as the context size.
|
||||
int32_t n_cells;
|
||||
|
||||
// Maximum number of sequences that can exist in a cell. It's not an error
|
||||
// if there are more sequences in a cell than this value, however they will
|
||||
// not be visible in the view cells_sequences.
|
||||
int32_t n_max_seq;
|
||||
|
||||
// Number of tokens in the cache. For example, if there are two populated
|
||||
// cells, the first with 1 sequence id in it and the second with 2 sequence
|
||||
// ids then you'll have 3 tokens.
|
||||
int32_t token_count;
|
||||
|
||||
// Number of populated cache cells.
|
||||
int32_t used_cells;
|
||||
|
||||
// Maximum contiguous empty slots in the cache.
|
||||
int32_t max_contiguous;
|
||||
|
||||
// Index to the start of the max_contiguous slot range. Can be negative
|
||||
// when cache is full.
|
||||
int32_t max_contiguous_idx;
|
||||
|
||||
// Information for an individual cell.
|
||||
struct llama_kv_cache_view_cell * cells;
|
||||
|
||||
// The sequences for each cell. There will be n_max_seq items per cell.
|
||||
llama_seq_id * cells_sequences;
|
||||
};
|
||||
|
||||
// Create an empty KV cache view. (use only for debugging purposes)
|
||||
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
|
||||
|
||||
// Free a KV cache view. (use only for debugging purposes)
|
||||
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
|
||||
|
||||
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
|
||||
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
|
||||
|
||||
// Returns the number of tokens in the KV cache (slow, use only for debug)
|
||||
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
|
||||
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context * ctx);
|
||||
|
||||
// Clear the KV cache
|
||||
LLAMA_API void llama_kv_cache_clear(
|
||||
@ -517,6 +585,12 @@ extern "C" {
|
||||
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
|
||||
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
|
||||
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
|
||||
|
||||
// Returns -1 if unknown, 1 for true or 0 for false.
|
||||
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
|
||||
|
||||
// codellama infill tokens
|
||||
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
|
||||
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
|
||||
|
BIN
models/ggml-vocab-stablelm-3b-4e1t.gguf
Normal file
BIN
models/ggml-vocab-stablelm-3b-4e1t.gguf
Normal file
Binary file not shown.
@ -33,9 +33,11 @@ llama_build_executable(test-tokenizer-1-bpe.cpp)
|
||||
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
|
||||
llama_test_executable(test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
|
||||
llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
|
||||
llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
|
||||
llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
|
||||
# llama_test_executable(test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
|
||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||
llama_build_and_test_executable(test-grad0.cpp) # SLOW
|
||||
|
@ -1,7 +1,5 @@
|
||||
# tests with BPE tokenizer
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
@ -16,34 +14,34 @@ dir_tokenizer = args.dir_tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
|
||||
tests = [
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
"\n =",
|
||||
"' era",
|
||||
]
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
"\n =",
|
||||
"' era",
|
||||
]
|
||||
|
||||
for text in tests:
|
||||
print('text: ', text)
|
||||
|
@ -1,7 +1,5 @@
|
||||
# tests with SPM tokenizer
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
@ -16,32 +14,32 @@ dir_tokenizer = args.dir_tokenizer
|
||||
tokenizer = SentencePieceProcessor(dir_tokenizer + '/tokenizer.model')
|
||||
|
||||
tests = [
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
]
|
||||
"",
|
||||
" ",
|
||||
" ",
|
||||
" ",
|
||||
"\t",
|
||||
"\n",
|
||||
"\t\n",
|
||||
"Hello world",
|
||||
" Hello world",
|
||||
"Hello World",
|
||||
" Hello World",
|
||||
" Hello World!",
|
||||
"Hello, world!",
|
||||
" Hello, world!",
|
||||
" this is 🦙.cpp",
|
||||
"w048 7tuijk dsdfhu",
|
||||
"нещо на Български",
|
||||
"កាន់តែពិសេសអាចខលចេញ",
|
||||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||||
"Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
]
|
||||
|
||||
|
||||
for text in tests:
|
||||
|
Loading…
Reference in New Issue
Block a user