Merge remote-tracking branch 'upstream/master' into nomic-vulkan-redo

This commit is contained in:
Jared Van Bortel 2023-11-23 13:05:04 -05:00
commit 9ae88baf38
50 changed files with 1949 additions and 1693 deletions

20
.github/workflows/python-lint.yml vendored Normal file
View File

@ -0,0 +1,20 @@
name: flake8 Lint
on: [push, pull_request]
jobs:
flake8-lint:
runs-on: ubuntu-latest
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
exclude: "examples/*,examples/*/**,*/**/__init__.py"

1
.gitignore vendored
View File

@ -64,6 +64,7 @@ models-mnt
/speculative /speculative
/parallel /parallel
/train-text-from-scratch /train-text-from-scratch
/tokenize
/vdot /vdot
/common/build-info.cpp /common/build-info.cpp
arm_neon.h arm_neon.h

View File

@ -597,6 +597,15 @@ if (LLAMA_LTO)
endif() endif()
endif() endif()
# this version of Apple ld64 is buggy
execute_process(
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
ERROR_VARIABLE output
)
if (output MATCHES "dyld-1015\.7")
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
endif()
# Architecture specific # Architecture specific
# TODO: probably these flags need to be tweaked on some architectures # TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue # feel free to update the Makefile for your architecture and send a pull request or issue
@ -704,8 +713,12 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
endif() endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64") elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected") message(STATUS "PowerPC detected")
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
add_compile_options(-mcpu=powerpc64le)
else()
add_compile_options(-mcpu=native -mtune=native) add_compile_options(-mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be) #TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
else() else()
message(STATUS "Unknown architecture") message(STATUS "Unknown architecture")
endif() endif()

View File

@ -2,7 +2,7 @@
BUILD_TARGETS = \ BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \ simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o speculative infill tokenize benchmark-matmult parallel finetune export-lora tests/test-c.o
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = \ TEST_TARGETS = \
@ -239,6 +239,11 @@ else
endif endif
endif endif
# this version of Apple ld64 is buggy
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
endif
# OS specific # OS specific
# TODO: support Windows # TODO: support Windows
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)' ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
@ -337,6 +342,12 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
endif endif
endif endif
ifneq ($(filter ppc64le%,$(UNAME_M)),)
MK_CFLAGS += -mcpu=powerpc64le
MK_CXXFLAGS += -mcpu=powerpc64le
CUDA_POWER_ARCH = 1
endif
else else
MK_CFLAGS += -march=rv64gcv -mabi=lp64d MK_CFLAGS += -march=rv64gcv -mabi=lp64d
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
@ -387,6 +398,8 @@ else
endif #LLAMA_CUDA_NVCC endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH ifdef CUDA_DOCKER_ARCH
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH) NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
else ifdef CUDA_POWER_ARCH
NVCCFLAGS +=
else else
NVCCFLAGS += -arch=native NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH endif # CUDA_DOCKER_ARCH
@ -581,6 +594,9 @@ infill: examples/infill/infill.cpp ggml.o llama.o $(C
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View File

@ -10,7 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics ### Hot topics
- ⚠️ **Upcoming change that might break functionality. Help with testing is needed:** https://github.com/ggerganov/llama.cpp/pull/3912 - Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
---- ----
@ -93,6 +93,7 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410) - [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417) - [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) - [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
**Bindings:** **Bindings:**
@ -409,19 +410,27 @@ Building the program with BLAS support may lead to some performance improvements
This provides BLAS acceleration on HIP-supported AMD GPUs. This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed. Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html). You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
Windows support is coming soon...
- Using `make`: - Using `make`:
```bash ```bash
make LLAMA_HIPBLAS=1 make LLAMA_HIPBLAS=1
``` ```
- Using `CMake`: - Using `CMake` for Linux:
```bash ```bash
mkdir build mkdir build
cd build cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build . cmake --build .
``` ```
- Using `CMake` for Windows:
```bash
mkdir build
cd build
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
cmake --build .
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used. The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3. If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.

View File

@ -12,6 +12,7 @@
#include <regex> #include <regex>
#include <sstream> #include <sstream>
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include <cinttypes> #include <cinttypes>
@ -491,8 +492,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.interactive_first = true; params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") { } else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true; params.instruct = true;
} else if (arg == "-cml" || arg == "--chatml") {
params.chatml = true;
} else if (arg == "--infill") { } else if (arg == "--infill") {
params.infill = true; params.infill = true;
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
} else if (arg == "--multiline-input") { } else if (arg == "--multiline-input") {
params.multiline_input = true; params.multiline_input = true;
} else if (arg == "--simple-io") { } else if (arg == "--simple-io") {
@ -730,6 +735,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -i, --interactive run in interactive mode\n"); printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
printf(" -r PROMPT, --reverse-prompt PROMPT\n"); printf(" -r PROMPT, --reverse-prompt PROMPT\n");
printf(" halt generation at PROMPT, return control in interactive mode\n"); printf(" halt generation at PROMPT, return control in interactive mode\n");
@ -832,6 +838,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
#endif #endif
printf(" --verbose-prompt print prompt before generation\n"); printf(" --verbose-prompt print prompt before generation\n");
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
@ -931,7 +939,7 @@ void llama_batch_add(
const std::vector<llama_seq_id> & seq_ids, const std::vector<llama_seq_id> & seq_ids,
bool logits) { bool logits) {
batch.token [batch.n_tokens] = id; batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos, batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size(); batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) { for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i]; batch.seq_id[batch.n_tokens][i] = seq_ids[i];
@ -1072,6 +1080,12 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
return result; return result;
} }
bool llama_should_add_bos_token(const llama_model * model) {
const int add_bos = llama_add_bos_token(model);
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}
// //
// YAML utils // YAML utils
// //
@ -1188,6 +1202,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) { if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\""; data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return; return;
@ -1376,3 +1391,77 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p); fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
} }
//
// KV cache utils
//
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
seqs[cs_curr[j]] = seqs.size();
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}

View File

@ -102,6 +102,7 @@ struct gpt_params {
bool random_prompt = false; // do not randomize prompt if none provided bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode bool interactive = false; // interactive mode
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@ -121,6 +122,7 @@ struct gpt_params {
bool numa = false; // attempt optimizations that help on some NUMA systems bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
// multimodal models (see examples/llava) // multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector std::string mmproj = ""; // path to multimodal projector
@ -200,6 +202,10 @@ std::string llama_detokenize_bpe(
llama_context * ctx, llama_context * ctx,
const std::vector<llama_token> & tokens); const std::vector<llama_token> & tokens);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
// //
// YAML utils // YAML utils
// //
@ -213,3 +219,13 @@ std::string get_sortable_timestamp();
void dump_non_result_info_yaml( void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx, FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc); const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

View File

@ -1136,6 +1136,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
@ -1355,6 +1356,17 @@ bool consume_common_train_arg(
return true; return true;
} }
params->adam_gclip = std::stof(argv[i]); params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else if (arg == "-h" || arg == "--help") { } else if (arg == "-h" || arg == "--help") {
params->print_usage = true; params->print_usage = true;
return true; return true;

View File

@ -1,317 +0,0 @@
#!/usr/bin/env python3
# HF baichuan --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Any
import itertools
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
if TYPE_CHECKING:
from typing import TypeAlias
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
r = weights.shape[0] // 3
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
r = weights.shape[0] // 3
return weights[r * n_part : r * n_part + r, ...]
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
endianess = gguf.GGUFEndian.LITTLE
if args.bigendian:
endianess = gguf.GGUFEndian.BIG
endianess_str = "Big Endian" if args.bigendian else "Little Endian"
print(f"gguf: Conversion Endianess {endianess}")
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
print("hello print: ",hparams["architectures"][0])
if hparams["architectures"][0] != "BaichuanForCausalLM" and hparams["architectures"][0] != "BaiChuanForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
print(f"num_parts:{num_parts}\n")
ARCH=gguf.MODEL_ARCH.BAICHUAN
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
elif "model_max_length" in hparams:
ctx_length = hparams["model_max_length"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_model_file = dir_model / 'tokenizer.model'
if not tokenizer_model_file.is_file():
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
sys.exit(1)
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
vocab_size = hparams.get('vocab_size')
if vocab_size is None:
vocab_size = tokenizer.vocab_size()
for i in range(vocab_size):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
tmp=model_part
for i in range(block_count):
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@ -150,8 +150,6 @@ class Model:
@staticmethod @staticmethod
def from_model_architecture(model_architecture): def from_model_architecture(model_architecture):
if model_architecture == "StableLMEpochForCausalLM":
return StableLMModel
if model_architecture == "GPTNeoXForCausalLM": if model_architecture == "GPTNeoXForCausalLM":
return GPTNeoXModel return GPTNeoXModel
if model_architecture == "BloomForCausalLM": if model_architecture == "BloomForCausalLM":
@ -168,6 +166,8 @@ class Model:
return RefactModel return RefactModel
if model_architecture == "PersimmonForCausalLM": if model_architecture == "PersimmonForCausalLM":
return PersimmonModel return PersimmonModel
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
return Model return Model
def _is_model_safetensors(self) -> bool: def _is_model_safetensors(self) -> bool:
@ -193,7 +193,7 @@ class Model:
return gguf.MODEL_ARCH.MPT return gguf.MODEL_ARCH.MPT
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"): if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return gguf.MODEL_ARCH.BAICHUAN return gguf.MODEL_ARCH.BAICHUAN
if arch == "FalconForCausalLM": if arch in ("FalconForCausalLM", "RWForCausalLM"):
return gguf.MODEL_ARCH.FALCON return gguf.MODEL_ARCH.FALCON
if arch == "GPTBigCodeForCausalLM": if arch == "GPTBigCodeForCausalLM":
return gguf.MODEL_ARCH.STARCODER return gguf.MODEL_ARCH.STARCODER
@ -201,6 +201,8 @@ class Model:
return gguf.MODEL_ARCH.REFACT return gguf.MODEL_ARCH.REFACT
if arch == "PersimmonForCausalLM": if arch == "PersimmonForCausalLM":
return gguf.MODEL_ARCH.PERSIMMON return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
raise NotImplementedError(f'Architecture "{arch}" not supported!') raise NotImplementedError(f'Architecture "{arch}" not supported!')
@ -294,15 +296,6 @@ class Model:
special_vocab.add_to_gguf(self.gguf_writer) special_vocab.add_to_gguf(self.gguf_writer)
class StableLMModel(Model):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_dimension_count(
int(self.hparams["rope_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
)
self.gguf_writer.add_layer_norm_eps(1e-5)
class GPTNeoXModel(Model): class GPTNeoXModel(Model):
def set_gguf_parameters(self): def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"] block_count = self.hparams["num_hidden_layers"]
@ -824,8 +817,24 @@ class PersimmonModel(Model):
self.gguf_writer.add_tensor(new_name, data) self.gguf_writer.add_tensor(new_name, data)
class StableLMModel(Model):
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######
def parse_args() -> argparse.Namespace: def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file") parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser.add_argument( parser.add_argument(

View File

@ -2,7 +2,6 @@
from __future__ import annotations from __future__ import annotations
import argparse import argparse
import math
import struct import struct
import sys import sys
from enum import IntEnum from enum import IntEnum
@ -15,11 +14,13 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf import gguf
class GGMLFormat(IntEnum): class GGMLFormat(IntEnum):
GGML = 0 GGML = 0
GGMF = 1 GGMF = 1
GGJT = 2 GGJT = 2
class GGMLFType(IntEnum): class GGMLFType(IntEnum):
ALL_F32 = 0 ALL_F32 = 0
MOSTLY_F16 = 1 MOSTLY_F16 = 1
@ -39,6 +40,7 @@ class GGMLFType(IntEnum):
MOSTLY_Q5_K_M = 17 MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18 MOSTLY_Q6_K = 18
class Hyperparameters: class Hyperparameters:
def __init__(self): def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0 self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
@ -70,6 +72,7 @@ class Hyperparameters:
def __str__(self): def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>' return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
class Vocab: class Vocab:
def __init__(self, load_scores = True): def __init__(self, load_scores = True):
self.items = [] self.items = []
@ -91,6 +94,7 @@ class Vocab:
self.items.append((item_text, item_score)) self.items.append((item_text, item_score))
return offset - orig_offset return offset - orig_offset
class Tensor: class Tensor:
def __init__(self, use_padding = True): def __init__(self, use_padding = True):
self.name = None self.name = None
@ -124,6 +128,7 @@ class Tensor:
# print(n_dims, name_len, dtype, self.dims, self.name, pad) # print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset return offset - orig_offset
class GGMLModel: class GGMLModel:
def __init__(self): def __init__(self):
self.hyperparameters = None self.hyperparameters = None
@ -160,7 +165,7 @@ class GGMLModel:
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16): if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.' err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2): elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1, if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0): GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.' err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0: if len(err) > 0:
@ -188,6 +193,7 @@ class GGMLModel:
hp.set_n_ff(self) hp.set_n_ff(self)
return offset return offset
class GGMLToGGUF: class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None): def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters hp = ggml_model.hyperparameters
@ -218,7 +224,7 @@ class GGMLToGGUF:
gguf_writer = gguf.GGUFWriter( gguf_writer = gguf.GGUFWriter(
self.cfg.output, self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False ) use_temp_file = False)
self.add_params(gguf_writer) self.add_params(gguf_writer)
self.add_vocab(gguf_writer) self.add_vocab(gguf_writer)
if self.special_vocab is not None: if self.special_vocab is not None:
@ -342,7 +348,8 @@ class GGMLToGGUF:
mapped_name, mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims, raw_shape = tempdims,
raw_dtype = tensor.dtype ) raw_dtype = tensor.dtype)
def handle_metadata(cfg, hp): def handle_metadata(cfg, hp):
import convert import convert
@ -366,7 +373,7 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata') raise ValueError('Unable to load metadata')
vocab = convert.load_vocab( vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype ) cfg.vocabtype)
# FIXME: Respect cfg.vocab_dir? # FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir, svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
load_merges = cfg.vocabtype == 'bpe', load_merges = cfg.vocabtype == 'bpe',
@ -374,6 +381,7 @@ def handle_metadata(cfg, hp):
convert.check_vocab_size(params, vocab) convert.check_vocab_size(params, vocab)
return (params, vocab, svocab) return (params, vocab, svocab)
def handle_args(): def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF') parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True, parser.add_argument('--input', '-i', type = Path, required = True,
@ -398,6 +406,7 @@ def handle_args():
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)") help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args() return parser.parse_args()
def main(): def main():
cfg = handle_args() cfg = handle_args()
print(f'* Using config: {cfg}') print(f'* Using config: {cfg}')
@ -407,7 +416,7 @@ def main():
data = np.memmap(cfg.input, mode = 'r') data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel() model = GGMLModel()
print('* Scanning GGML input file') print('* Scanning GGML input file')
offset = model.load(data, 0) offset = model.load(data, 0) # noqa
print(f'* GGML model hyperparameters: {model.hyperparameters}') print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None vocab_override = None
params_override = None params_override = None
@ -422,12 +431,15 @@ def main():
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML: if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg, converter = GGMLToGGUF(
model, data, cfg,
params_override = params_override, params_override = params_override,
vocab_override = vocab_override, vocab_override = vocab_override,
special_vocab = special_vocab ) special_vocab = special_vocab
)
converter.save() converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}') print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__': if __name__ == '__main__':
main() main()

View File

@ -9,6 +9,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf import gguf
def _flatten_dict(dct, tensors, prefix=None): def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict) assert isinstance(dct, dict)
for key in dct.keys(): for key in dct.keys():
@ -21,6 +22,7 @@ def _flatten_dict(dct, tensors, prefix=None):
raise ValueError(type(dct[key])) raise ValueError(type(dct[key]))
return None return None
def _get_sentencepiece_tokenizer_info(dir_model: Path): def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model' tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path) print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
@ -54,6 +56,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
pass pass
return tokens, scores, toktypes return tokens, scores, toktypes
def main(): def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file") parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
@ -125,6 +128,5 @@ def main():
print("") print("")
if __name__ == '__main__': if __name__ == '__main__':
main() main()

46
convert.py Executable file → Normal file
View File

@ -46,6 +46,7 @@ DEFAULT_CONCURRENCY = 8
# data types # data types
# #
@dataclass(frozen=True) @dataclass(frozen=True)
class DataType: class DataType:
name: str name: str
@ -55,15 +56,18 @@ class DataType:
def elements_to_bytes(self, n_elements: int) -> int: def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize return n_elements * self.dtype.itemsize
@dataclass(frozen=True) @dataclass(frozen=True)
class UnquantizedDataType(DataType): class UnquantizedDataType(DataType):
pass pass
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0']) DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0']) DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = []) DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0']) DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
@dataclass(frozen=True) @dataclass(frozen=True)
class QuantizedDataType(DataType): class QuantizedDataType(DataType):
block_size: int block_size: int
@ -77,6 +81,7 @@ class QuantizedDataType(DataType):
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}' assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size) return self.quantized_dtype.itemsize * (n_elements // self.block_size)
@dataclass(frozen=True) @dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType): class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python! # Mini Q8_0 quantization in Python!
@ -86,6 +91,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
n_blocks = arr.size // self.block_size n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size)) blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre # Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]: def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127) d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'): with np.errstate(divide = 'ignore'):
@ -94,6 +100,7 @@ class Q8_0QuantizedDataType(QuantizedDataType):
yield from zip(d, qs) yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype) return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0', DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
dtype = np.dtype(np.float32), valid_conversions = [], dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32, ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
@ -116,6 +123,8 @@ SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
# TODO: match this with `llama_ftype` # TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType # TODO: rename to LLAMAFileType
# TODO: move to `gguf.py` # TODO: move to `gguf.py`
class GGMLFileType(enum.IntEnum): class GGMLFileType(enum.IntEnum):
AllF32 = 0 AllF32 = 0
MostlyF16 = 1 # except 1d tensors MostlyF16 = 1 # except 1d tensors
@ -128,6 +137,7 @@ class GGMLFileType(enum.IntEnum):
# 1D tensors are always F32. # 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32 return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32, GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16, GGMLFileType.MostlyF16 : DT_F16,
@ -138,6 +148,7 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
# hparams loading # hparams loading
# #
@dataclass @dataclass
class Params: class Params:
n_vocab: int n_vocab: int
@ -167,11 +178,11 @@ class Params:
# try transformer naming first # try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model: if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else: else:
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1: if n_layer < 1:
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n" raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
@ -308,7 +319,7 @@ class BpeVocab:
(item['content'], item['id']) (item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', []) for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary. # Added tokens here can be duplicates of the main vocabulary.
if item['content'] not in self.bpe_tokenizer ) if item['content'] not in self.bpe_tokenizer)
vocab_size: int = len(self.bpe_tokenizer) vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
@ -326,7 +337,6 @@ class BpeVocab:
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer tokenizer = self.bpe_tokenizer
from transformers.models.gpt2 import tokenization_gpt2
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
for i, _ in enumerate(tokenizer): for i, _ in enumerate(tokenizer):
@ -406,6 +416,7 @@ class SentencePieceVocab:
def __repr__(self) -> str: def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab' Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
# #
@ -413,8 +424,9 @@ Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
# TODO: reuse (probably move to gguf.py?) # TODO: reuse (probably move to gguf.py?)
# #
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
#print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) ) # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
if n_head_kv is not None and n_head != n_head_kv: if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
@ -588,6 +600,7 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTe
return lazy_tensor.load().permute(n_head, n_head_kv) return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor: def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
@ -595,6 +608,7 @@ def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_
s[0] = s[0] // 3 s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor: def load() -> Tensor:
return lazy_tensor.load().part(n_part) return lazy_tensor.load().part(n_part)
@ -690,6 +704,7 @@ def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
data_base_path=pickle_paths[0][:-4], data_base_path=pickle_paths[0][:-4],
zip_file=zf) zip_file=zf)
model = unpickler.load() model = unpickler.load()
if 'model' in model: model = model['model']
as_dict = dict(model.items()) as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
@ -743,6 +758,7 @@ def lazy_load_file(path: Path) -> ModelPlus:
In = TypeVar('In') In = TypeVar('In')
Out = TypeVar('Out') Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]: def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next` '''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than fast enough, this will stop calling `func` at some point rather than
@ -777,6 +793,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
break break
yield result yield result
def check_vocab_size(params: Params, vocab: Vocab) -> None: def check_vocab_size(params: Params, vocab: Vocab) -> None:
if params.n_vocab != vocab.vocab_size: if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab) assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
@ -795,7 +812,7 @@ def check_vocab_size(params: Params, vocab: Vocab) -> None:
class OutputFile: class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None: def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None: def add_meta_arch(self, params: Params) -> None:
@ -875,7 +892,7 @@ class OutputFile:
self.gguf.close() self.gguf.close()
@staticmethod @staticmethod
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian=gguf.GGUFEndian.LITTLE) -> None: def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab) check_vocab_size(params, vocab)
of = OutputFile(fname_out, endianess=endianess) of = OutputFile(fname_out, endianess=endianess)
@ -937,8 +954,9 @@ class OutputFile:
of.close() of.close()
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32 return GGMLFileType.AllF32
@ -951,10 +969,12 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
raise Exception(f"Unexpected combination of types: {name_to_type}") raise Exception(f"Unexpected combination of types: {name_to_type}")
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
for (name, tensor) in model.items()} for (name, tensor) in model.items()}
def convert_model_names(model: LazyModel, params: Params) -> LazyModel: def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
tmap = gguf.TensorNameMap(ARCH, params.n_layer) tmap = gguf.TensorNameMap(ARCH, params.n_layer)
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
@ -967,7 +987,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
print(f"Permuting layer {i}") print(f"Permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
#tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model: elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
print(f"Unpacking and permuting layer {i}") print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
@ -992,6 +1012,7 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
return out return out
def nth_multifile_path(path: Path, n: int) -> Path | None: def nth_multifile_path(path: Path, n: int) -> Path | None:
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
the nth path in the model. the nth path in the model.
@ -1036,7 +1057,8 @@ def load_some_model(path: Path) -> ModelPlus:
# Be extra-friendly and accept either a file or a directory: # Be extra-friendly and accept either a file or a directory:
if path.is_dir(): if path.is_dir():
# Check if it's a set of safetensors files first # Check if it's a set of safetensors files first
files = list(path.glob("model-00001-of-*.safetensors")) globs = ["model-00001-of-*.safetensors", "model.safetensors"]
files = [file for glob in globs for file in path.glob(glob)]
if not files: if not files:
# Try the PyTorch patterns too, with lower priority # Try the PyTorch patterns too, with lower priority
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
@ -1123,7 +1145,7 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin, *.safetensors)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm") parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY) parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)

BIN
docs/llama-star/idea-arch.key Executable file

Binary file not shown.

Binary file not shown.

View File

@ -24,6 +24,7 @@ else()
add_subdirectory(llama-bench) add_subdirectory(llama-bench)
add_subdirectory(llava) add_subdirectory(llava)
add_subdirectory(main) add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel) add_subdirectory(parallel)
add_subdirectory(perplexity) add_subdirectory(perplexity)
add_subdirectory(quantize) add_subdirectory(quantize)

View File

@ -21,7 +21,7 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin ./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
``` ```
Finetune output files will be saved every N iterations (config with `--save-every N`). **Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output. The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
So in above example after 10 iterations these files will be written: So in above example after 10 iterations these files will be written:
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf - chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf

View File

@ -3,9 +3,7 @@
import argparse import argparse
import gguf import gguf
import os
import struct import struct
import sys
import numpy as np import numpy as np
from pathlib import Path from pathlib import Path

View File

@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd); randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd); ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd); randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd); ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd); randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd); ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) { for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i]; auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd); randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd); ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd); randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd); ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd); randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd); ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd); randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd); ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd); randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd); ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd); randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd); ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd); randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd); ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd); randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd); ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd); randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd); ggml_set_zero(layer.w3_b);
} }
free_random_normal_distribution(rnd); free_random_normal_distribution(rnd);
@ -1460,17 +1460,6 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par
} }
params->n_rank_w3 = std::stoi(argv[i]); params->n_rank_w3 = std::stoi(argv[i]);
params->custom_n_rank_w3 = true; params->custom_n_rank_w3 = true;
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->common.n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else { } else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
train_print_usage(argc, argv, &default_params); train_print_usage(argc, argv, &default_params);

View File

@ -146,6 +146,13 @@ int main(int argc, char ** argv) {
return 0; return 0;
} }
if (params.chatml) {
printf("\n************\n");
printf("%s: please use the 'main' tool for chatml mode\n", __func__);
printf("************\n\n");
return 0;
}
if (!params.antiprompt.empty()) { if (!params.antiprompt.empty()) {
printf("\n************\n"); printf("\n************\n");
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__); printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
@ -230,7 +237,7 @@ int main(int argc, char ** argv) {
LOG_TEE("\n"); LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str()); LOG_TEE("%s\n", get_system_info(params).c_str());
} }
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos); LOG("add_bos: %d\n", add_bos);
bool suff_rm_leading_spc = params.escape; bool suff_rm_leading_spc = params.escape;

View File

@ -761,7 +761,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
temp->ny = img->ny; temp->ny = img->ny;
temp->size = img->size; temp->size = img->size;
temp->data = new uint8_t[temp->size](); temp->data = new uint8_t[temp->size]();
*temp->data = *img->data; // copy memcpy(&temp->data[0], &img->data[0], temp->size); // copy
} }
const int nx = temp->nx; const int nx = temp->nx;

View File

@ -208,9 +208,10 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
int n_past = 0; int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
// llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:" // llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, true); eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, add_bos);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past); llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false); eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);

View File

@ -127,7 +127,14 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
fclose(file); fclose(file);
return false; return false;
} }
fread(buffer, 1, fileSize, file); // Read the file into the buffer errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
die_fmt("read error: %s", strerror(errno));
}
if (ret != (size_t) fileSize) {
die("unexpectedly reached end of file");
}
fclose(file); // Close the file fclose(file); // Close the file
*bytesOut = buffer; *bytesOut = buffer;

View File

@ -237,13 +237,16 @@ int main(int argc, char ** argv) {
} }
} }
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos); LOG("add_bos: %d\n", add_bos);
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) {
LOG("tokenize the prompt\n"); LOG("tokenize the prompt\n");
if (params.chatml) {
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>";
}
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
} else { } else {
LOG("use session tokens\n"); LOG("use session tokens\n");
@ -321,7 +324,7 @@ int main(int argc, char ** argv) {
} }
// number of tokens to keep when resetting context // number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) { if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) {
params.n_keep = (int)embd_inp.size(); params.n_keep = (int)embd_inp.size();
} }
@ -332,11 +335,23 @@ int main(int argc, char ** argv) {
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str()); LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str()); LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
// chatml prefix & suffix
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true);
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true);
LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str());
LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str());
// in instruct mode, we inject a prefix and a suffix to each input by the user // in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) { if (params.instruct) {
params.interactive_first = true; params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n"); params.antiprompt.push_back("### Instruction:\n\n");
} }
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.push_back("<|im_start|>user\n");
}
// enable interactive mode if interactive start is specified // enable interactive mode if interactive start is specified
if (params.interactive_first) { if (params.interactive_first) {
@ -713,7 +728,7 @@ int main(int argc, char ** argv) {
is_interacting = true; is_interacting = true;
printf("\n"); printf("\n");
} else if (params.instruct) { } else if (params.instruct || params.chatml) {
is_interacting = true; is_interacting = true;
} }
} }
@ -721,7 +736,7 @@ int main(int argc, char ** argv) {
if (n_past > 0 && is_interacting) { if (n_past > 0 && is_interacting) {
LOG("waiting for user input\n"); LOG("waiting for user input\n");
if (params.instruct) { if (params.instruct || params.chatml) {
printf("\n> "); printf("\n> ");
} }
@ -768,6 +783,12 @@ int main(int argc, char ** argv) {
n_consumed = embd_inp.size(); n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
} }
// chatml mode: insert user chat prefix
if (params.chatml && !is_antiprompt) {
LOG("inserting chatml prefix\n");
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) { if (params.escape) {
process_escapes(buffer); process_escapes(buffer);
} }
@ -786,6 +807,11 @@ int main(int argc, char ** argv) {
LOG("inserting instruction suffix\n"); LOG("inserting instruction suffix\n");
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
} }
// chatml mode: insert assistant chat suffix
if (params.chatml) {
LOG("inserting chatml suffix\n");
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end());
}
for (size_t i = original_size; i < embd_inp.size(); ++i) { for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i]; const llama_token token = embd_inp[i];
@ -811,7 +837,7 @@ int main(int argc, char ** argv) {
} }
// end of text token // end of text token
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive)) { if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) {
LOG_TEE(" [end of text]\n"); LOG_TEE(" [end of text]\n");
break; break;
} }

View File

@ -1,5 +1,5 @@
// A basic application simulating a server with multiple clients. // A basic application simulating a server with multiple clients.
// The clients submite requests to the server and they are processed in parallel. // The clients submit requests to the server and they are processed in parallel.
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
@ -113,6 +113,8 @@ int main(int argc, char ** argv) {
// insert new requests as soon as the previous one is done // insert new requests as soon as the previous one is done
const bool cont_batching = params.cont_batching; const bool cont_batching = params.cont_batching;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS #ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("parallel", "log")); log_set_target(log_filename_generator("parallel", "log"));
LOG_TEE("Log start\n"); LOG_TEE("Log start\n");
@ -172,6 +174,8 @@ int main(int argc, char ** argv) {
int32_t n_total_gen = 0; int32_t n_total_gen = 0;
int32_t n_cache_miss = 0; int32_t n_cache_miss = 0;
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
const auto t_main_start = ggml_time_us(); const auto t_main_start = ggml_time_us();
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__); LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
@ -201,6 +205,11 @@ int main(int argc, char ** argv) {
LOG_TEE("Processing requests ...\n\n"); LOG_TEE("Processing requests ...\n\n");
while (true) { while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
llama_batch_clear(batch); llama_batch_clear(batch);
// decode any currently ongoing sequences // decode any currently ongoing sequences

View File

@ -149,8 +149,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
// Output: `perplexity: 13.5106 [114/114]` // Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval // BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const bool add_bos = is_spm;
fprintf(stderr, "%s: tokenizing the input ..\n", __func__); fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
@ -288,8 +287,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
// Output: `perplexity: 13.5106 [114/114]` // Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval // BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const bool add_bos = is_spm;
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
auto tim1 = std::chrono::high_resolution_clock::now(); auto tim1 = std::chrono::high_resolution_clock::now();
@ -481,7 +479,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "================================= is_spm = %d\n", is_spm); fprintf(stderr, "================================= is_spm = %d\n", is_spm);
// This is needed as usual for LLaMA models // This is needed as usual for LLaMA models
const bool add_bos = is_spm; const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
// Number of tasks to use when computing the score // Number of tasks to use when computing the score
if ( params.hellaswag_tasks < hs_task_count ) { if ( params.hellaswag_tasks < hs_task_count ) {

View File

@ -94,6 +94,10 @@ export async function* llama(prompt, params = {}, config = {}) {
break; break;
} }
} }
if (result.error) {
result.error = JSON.parse(result.error);
console.error(`llama.cpp error: ${result.error.content}`);
}
} }
} }
} }

View File

@ -501,6 +501,7 @@ struct llama_server_context
bool multimodal = false; bool multimodal = false;
bool clean_kv_cache = true; bool clean_kv_cache = true;
bool all_slots_are_idle = false; bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t id_gen; int32_t id_gen;
int32_t n_ctx; // total context for all clients / slots int32_t n_ctx; // total context for all clients / slots
@ -573,6 +574,8 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx); n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true; return true;
} }
@ -864,7 +867,7 @@ struct llama_server_context
} }
void update_system_prompt() { void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, true); system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch); llama_batch_clear(batch);
@ -1552,7 +1555,7 @@ struct llama_server_context
} }
else else
{ {
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
} }
slot.num_prompt_tokens = prompt_tokens.size(); slot.num_prompt_tokens = prompt_tokens.size();
@ -1629,7 +1632,7 @@ struct llama_server_context
const bool has_images = process_images(slot); const bool has_images = process_images(slot);
// process the prefix of first image // process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens; std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past) for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{ {
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false); llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
@ -2365,6 +2368,17 @@ int main(int argc, char **argv)
break; break;
} }
} else { } else {
const std::string str =
"error: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.c_str(), str.size()))
{
return false;
}
break; break;
} }
} }

View File

@ -94,9 +94,22 @@ int main(int argc, char ** argv) {
} }
} }
// tokenize the prompt
// Tokenize the prompt
const bool add_bos_tgt = llama_should_add_bos_token(model_tgt);
LOG("add_bos tgt: %d\n", add_bos_tgt);
const bool add_bos_dft = llama_should_add_bos_token(model_dft);
LOG("add_bos dft: %d\n", add_bos_dft);
if (add_bos_tgt != add_bos_dft) {
fprintf(stderr, "%s: error: draft model add_bos must match target model to use speculation but ", __func__);
fprintf(stderr, "add_bos_dft = %d while add_bos_tgt = %d\n", add_bos_dft, add_bos_tgt);
return 1;
}
std::vector<llama_token> inp; std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx_tgt, params.prompt, true); inp = ::llama_tokenize(ctx_tgt, params.prompt, add_bos_tgt, true);
const int max_context_size = llama_n_ctx(ctx_tgt); const int max_context_size = llama_n_ctx(ctx_tgt);
const int max_tokens_list_size = max_context_size - 4; const int max_tokens_list_size = max_context_size - 4;

View File

@ -0,0 +1,5 @@
set(TARGET tokenize)
add_executable(${TARGET} tokenize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@ -0,0 +1,44 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
if (argc < 3 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
return 1;
}
const char * model_path = argv[1];
const char * prompt = argv[2];
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
llama_backend_init(false);
llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params);
llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
const bool add_bos = llama_should_add_bos_token(model);
std::vector<llama_token> tokens;
tokens = ::llama_tokenize(model, prompt, add_bos, true);
for (int i = 0; i < (int) tokens.size(); i++) {
if (printing_ids) {
printf("%d\n", tokens[i]);
} else {
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
}
}
return 0;
}

View File

@ -88,6 +88,8 @@
#define CC_OFFSET_AMD 1000000 #define CC_OFFSET_AMD 1000000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define GGML_CUDA_MAX_NODES 8192
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM: // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
@ -233,7 +235,7 @@ typedef float2 dfloat2;
#endif //GGML_CUDA_F16 #endif //GGML_CUDA_F16
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) { static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0; int x32 = 0;
x32 |= x16[0] << 0; x32 |= x16[0] << 0;
@ -243,7 +245,7 @@ static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const
} }
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) { static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
int x32 = 0; int x32 = 0;
x32 |= x16[0] << 0; x32 |= x16[0] << 0;
@ -253,11 +255,11 @@ static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, con
} }
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) { static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
} }
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) { static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
} }
template<typename T> template<typename T>
@ -467,7 +469,7 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
#define MUL_MAT_SRC1_COL_STRIDE 128 #define MUL_MAT_SRC1_COL_STRIDE 128
#define MAX_STREAMS 8 #define MAX_STREAMS 8
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr }; static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
struct ggml_tensor_extra_gpu { struct ggml_tensor_extra_gpu {
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
@ -2246,6 +2248,7 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
@ -2257,7 +2260,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0); GGML_CUDA_ASSUME(k >= 0);
@ -2266,7 +2269,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI4_0; const int kbx = k / QI4_0;
const int kqsx = k % QI4_0; const int kqsx = k % QI4_0;
const block_q4_0 * bx0 = (block_q4_0 *) vx; const block_q4_0 * bx0 = (const block_q4_0 *) vx;
float * x_dmf = (float *) x_dm; float * x_dmf = (float *) x_dm;
@ -2304,9 +2307,10 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh; (void)x_sc;
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const float * x_dmf = (float *) x_dm; const float * x_dmf = (const float *) x_dm;
int u[2*VDR_Q4_0_Q8_1_MMQ]; int u[2*VDR_Q4_0_Q8_1_MMQ];
@ -2340,6 +2344,7 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y]; __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
@ -2351,6 +2356,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -2360,7 +2366,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI4_1; const int kbx = k / QI4_1;
const int kqsx = k % QI4_1; const int kqsx = k % QI4_1;
const block_q4_1 * bx0 = (block_q4_1 *) vx; const block_q4_1 * bx0 = (const block_q4_1 *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2395,6 +2401,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh; (void)x_sc;
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
@ -2432,6 +2439,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
@ -2443,6 +2451,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -2452,7 +2461,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI5_0; const int kbx = k / QI5_0;
const int kqsx = k % QI5_0; const int kqsx = k % QI5_0;
const block_q5_0 * bx0 = (block_q5_0 *) vx; const block_q5_0 * bx0 = (const block_q5_0 *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2507,6 +2516,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh; (void)x_sc;
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
@ -2546,6 +2556,7 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
@ -2557,6 +2568,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -2566,7 +2578,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI5_1; const int kbx = k / QI5_1;
const int kqsx = k % QI5_1; const int kqsx = k % QI5_1;
const block_q5_1 * bx0 = (block_q5_1 *) vx; const block_q5_1 * bx0 = (const block_q5_1 *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2618,6 +2630,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh; (void)x_sc;
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
@ -2652,6 +2665,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh; (void)x_sc;
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0]; __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
@ -2663,6 +2677,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh; (void)x_sc;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -2673,7 +2688,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kqsx = k % QI8_0; const int kqsx = k % QI8_0;
float * x_dmf = (float *) x_dm; float * x_dmf = (float *) x_dm;
const block_q8_0 * bx0 = (block_q8_0 *) vx; const block_q8_0 * bx0 = (const block_q8_0 *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2708,6 +2723,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh; (void)x_sc;
const float * x_dmf = (const float *) x_dm; const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds; const float * y_df = (const float *) y_ds;
@ -2741,6 +2757,7 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh;
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
@ -2754,6 +2771,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -2763,7 +2781,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI2_K; const int kbx = k / QI2_K;
const int kqsx = k % QI2_K; const int kqsx = k % QI2_K;
const block_q2_K * bx0 = (block_q2_K *) vx; const block_q2_K * bx0 = (const block_q2_K *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2811,6 +2829,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh;
const int kbx = k / QI2_K; const int kbx = k / QI2_K;
const int ky = (k % QI2_K) * QR2_K; const int ky = (k % QI2_K) * QR2_K;
@ -2884,7 +2903,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI3_K; const int kbx = k / QI3_K;
const int kqsx = k % QI3_K; const int kqsx = k % QI3_K;
const block_q3_K * bx0 = (block_q3_K *) vx; const block_q3_K * bx0 = (const block_q3_K *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -2965,7 +2984,7 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
const float * x_dmf = (const float *) x_dm; const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds; const float * y_df = (const float *) y_ds;
const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4; const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ]; int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
@ -3080,6 +3099,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh;
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
@ -3093,6 +3113,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -3102,7 +3123,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI4_K; // == 0 if QK_K == 256 const int kbx = k / QI4_K; // == 0 if QK_K == 256
const int kqsx = k % QI4_K; // == k if QK_K == 256 const int kqsx = k % QI4_K; // == k if QK_K == 256
const block_q4_K * bx0 = (block_q4_K *) vx; const block_q4_K * bx0 = (const block_q4_K *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -3147,7 +3168,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8); const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
const int * scales = (int *) bxi->scales; const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8); const int ksc = k % (WARP_SIZE/8);
@ -3162,6 +3183,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh;
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8); const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
@ -3261,6 +3283,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh;
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
@ -3274,6 +3297,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -3283,7 +3307,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI5_K; // == 0 if QK_K == 256 const int kbx = k / QI5_K; // == 0 if QK_K == 256
const int kqsx = k % QI5_K; // == k if QK_K == 256 const int kqsx = k % QI5_K; // == k if QK_K == 256
const block_q5_K * bx0 = (block_q5_K *) vx; const block_q5_K * bx0 = (const block_q5_K *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -3339,7 +3363,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8); const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
const int * scales = (int *) bxi->scales; const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8); const int ksc = k % (WARP_SIZE/8);
@ -3354,6 +3378,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh;
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8); const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
@ -3390,6 +3415,7 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
} }
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
(void)x_qh;
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y]; __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K]; __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
@ -3403,6 +3429,7 @@ template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K( template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
(void)x_qh;
GGML_CUDA_ASSUME(i_offset >= 0); GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps); GGML_CUDA_ASSUME(i_offset < nwarps);
@ -3412,7 +3439,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kbx = k / QI6_K; // == 0 if QK_K == 256
const int kqsx = k % QI6_K; // == k if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256
const block_q6_K * bx0 = (block_q6_K *) vx; const block_q6_K * bx0 = (const block_q6_K *) vx;
#pragma unroll #pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
@ -3474,6 +3501,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) { const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
(void)x_qh;
const float * x_dmf = (const float *) x_dm; const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds; const float * y_df = (const float *) y_ds;
@ -3516,7 +3544,7 @@ static __device__ __forceinline__ void mul_mat_q(
__shared__ int tile_y_qs[mmq_x * WARP_SIZE]; __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1]; __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f}; float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) { for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
@ -4489,6 +4517,13 @@ static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
*dsti = __float2half(*xi); *dsti = __float2half(*xi);
} }
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const half * xi = (const half *) cxi;
half * dsti = (half *) cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1> template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02, const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
@ -4742,6 +4777,25 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]); dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
} }
static __global__ void im2col_f32_f16(
const float * x, half * dst,
int ofs0, int ofs1, int IW, int IH, int CHW,
int s0, int s1, int p0, int p1, int d0, int d1) {
const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
const int offset_dst =
(threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
(blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = __float2half(0.0f);
} else {
const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1;
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
}
}
template<int qk, int qr, dequantize_kernel_t dq> template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
@ -5642,6 +5696,16 @@ static void ggml_cpy_f32_f16_cuda(
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12); (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
} }
static void ggml_cpy_f16_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) { static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE; const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k); scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
@ -5725,6 +5789,15 @@ static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, c
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x); soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
} }
static void im2col_f32_f16_cuda(const float * x, half * dst,
int OH, int IW, int IH, int OW, int IC,
int KH, int KW, int N, int ofs0, int ofs1,
int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) {
dim3 block_nums(IC, OH, OW);
dim3 block_dims(N, KH, KW);
im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
}
// buffer pool for cuda // buffer pool for cuda
#define MAX_CUDA_BUFFERS 256 #define MAX_CUDA_BUFFERS 256
@ -5793,7 +5866,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr; return ptr;
} }
#ifdef DEBUG_CUDA_MALLOC #ifdef DEBUG_CUDA_MALLOC
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz, fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024)); (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
#endif #endif
void * ptr; void * ptr;
@ -5931,7 +6004,7 @@ void * ggml_cuda_host_malloc(size_t size) {
// The allocation error can be bypassed. A null ptr will assigned out of this function. // The allocation error can be bypassed. A null ptr will assigned out of this function.
// This can fixed the OOM error in WSL. // This can fixed the OOM error in WSL.
cudaGetLastError(); cudaGetLastError();
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err)); size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr; return nullptr;
} }
@ -5976,18 +6049,18 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
if (nb0 == ts && nb1 == ts*ne0/bs) { if (nb0 == ts && nb1 == ts*ne0/bs) {
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream); return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
} else if (nb0 == ts) { }
if (nb0 == ts) {
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream); return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
} else { }
for (int64_t i1 = 0; i1 < i1_diff; i1++) { for (int64_t i1 = 0; i1 < i1_diff; i1++) {
const void * rx = (const void *) ((const char *) x + i1*nb1); const void * rx = (const void *) ((const char *) x + i1*nb1);
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
// pretend the row is a matrix with cols=1 // pretend the row is a matrix with cols=1
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream); cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
if (r != cudaSuccess) return r; if (r != cudaSuccess) { return r; }
} }
return cudaSuccess; return cudaSuccess;
}
} }
static void ggml_cuda_op_repeat( static void ggml_cuda_op_repeat(
@ -6309,6 +6382,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
return max_compute_capability >= CC_RDNA2 ? 128 : 64; return max_compute_capability >= CC_RDNA2 ? 128 : 64;
case GGML_TYPE_F16: case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1; return 1;
case GGML_TYPE_Q2_K: case GGML_TYPE_Q2_K:
return max_compute_capability >= CC_RDNA2 ? 128 : 32; return max_compute_capability >= CC_RDNA2 ? 128 : 32;
@ -6331,6 +6405,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
return 64; return 64;
case GGML_TYPE_F16: case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1; return 1;
case GGML_TYPE_Q2_K: case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K: case GGML_TYPE_Q3_K:
@ -6522,8 +6597,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
} }
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
size_t dst_as = 0; size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
@ -6698,6 +6772,45 @@ inline void ggml_cuda_op_alibi(
(void) src1_dd; (void) src1_dd;
} }
inline void ggml_cuda_op_im2col(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int64_t N = src1->ne[is_2D ? 3 : 2];
const int64_t IC = src1->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? src1->ne[1] : 1;
const int64_t IW = src1->ne[0];
const int64_t KH = is_2D ? src0->ne[1] : 1;
const int64_t KW = src0->ne[0];
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd,
OH, IW, IH, OW, IC, KH, KW, N,
ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream);
(void) src0;
(void) src0_dd;
}
inline void ggml_cuda_op_diag_mask_inf( inline void ggml_cuda_op_diag_mask_inf(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@ -6902,7 +7015,7 @@ static void ggml_cuda_op_mul_mat(
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3]; const int64_t ne03 = src0->ne[3];
const int64_t nrows0 = ggml_nrows(src0); // const int64_t nrows0 = ggml_nrows(src0);
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1]; const int64_t ne11 = src1->ne[1];
@ -7003,7 +7116,7 @@ static void ggml_cuda_op_mul_mat(
if (src0_on_device && src0_is_contiguous) { if (src0_on_device && src0_is_contiguous) {
src0_dd[id] = (char *) src0_extra->data_device[id]; src0_dd[id] = (char *) src0_extra->data_device[id];
} else { } else {
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); // const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]); src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
} }
@ -7236,7 +7349,7 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src
} }
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (!g_cublas_loaded) return false; if (!g_cublas_loaded) { return false; }
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
@ -7314,7 +7427,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
} }
__global__ void k_compute_batched_ptrs( __global__ static void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16, const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
const void ** ptrs_src, void ** ptrs_dst, const void ** ptrs_src, void ** ptrs_dst,
int ne12, int ne13, int ne12, int ne13,
@ -7610,6 +7723,9 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, main_stream); ne10, ne11, nb10, nb11, nb12, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, main_stream);
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
@ -7641,6 +7757,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi); ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
} }
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
}
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
(void) src0; (void) src0;
(void) src1; (void) src1;
@ -7752,11 +7872,11 @@ static size_t g_temp_tensor_extra_index = 0;
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (g_temp_tensor_extras == nullptr) { if (g_temp_tensor_extras == nullptr) {
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE]; g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
} }
size_t alloc_index = g_temp_tensor_extra_index; size_t alloc_index = g_temp_tensor_extra_index;
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE; g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));
@ -7923,7 +8043,7 @@ void ggml_cuda_free_scratch() {
} }
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
if (!g_cublas_loaded) return false; if (!g_cublas_loaded) { return false; }
ggml_cuda_func_t func; ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
@ -7934,6 +8054,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
return false; return false;
} }
if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
#endif
return false;
}
}
switch (tensor->op) { switch (tensor->op) {
case GGML_OP_REPEAT: case GGML_OP_REPEAT:
func = ggml_cuda_repeat; func = ggml_cuda_repeat;
@ -8012,6 +8141,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_ALIBI: case GGML_OP_ALIBI:
func = ggml_cuda_alibi; func = ggml_cuda_alibi;
break; break;
case GGML_OP_IM2COL:
func = ggml_cuda_im2col;
break;
default: default:
return false; return false;
} }
@ -8071,11 +8203,11 @@ struct ggml_backend_buffer_context_cuda {
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (temp_tensor_extras == nullptr) { if (temp_tensor_extras == nullptr) {
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE]; temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
} }
size_t alloc_index = temp_tensor_extra_index; size_t alloc_index = temp_tensor_extra_index;
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE; temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra)); memset(extra, 0, sizeof(*extra));
@ -8210,14 +8342,14 @@ static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backen
UNUSED(cgraph); UNUSED(cgraph);
} }
static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { [[noreturn]] static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(!"not implemented"); GGML_ASSERT(!"not implemented");
UNUSED(backend); UNUSED(backend);
UNUSED(plan); UNUSED(plan);
} }
static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { [[noreturn]] static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(!"not implemented"); GGML_ASSERT(!"not implemented");
UNUSED(backend); UNUSED(backend);
@ -8233,8 +8365,9 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
for (int i = 0; i < cgraph->n_nodes; i++) { for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i]; ggml_tensor * node = cgraph->nodes[i];
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE) if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE) {
continue; continue;
}
assert(node->backend == GGML_BACKEND_GPU); assert(node->backend == GGML_BACKEND_GPU);
for (int j = 0; j < GGML_MAX_SRC; j++) { for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) { if (node->src[j] != nullptr) {

View File

@ -39,12 +39,6 @@ extern "C" {
#endif #endif
#endif #endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float // 16-bit float
// on Arm, we use __fp16 // on Arm, we use __fp16
// on x86, we use uint16_t // on x86, we use uint16_t

View File

@ -26,7 +26,7 @@
#include <stdbool.h> #include <stdbool.h>
// max memory buffers that can be mapped to the device // max memory buffers that can be mapped to the device
#define GGML_METAL_MAX_BUFFERS 16 #define GGML_METAL_MAX_BUFFERS 64
#define GGML_METAL_MAX_COMMAND_BUFFERS 32 #define GGML_METAL_MAX_COMMAND_BUFFERS 32
struct ggml_tensor; struct ggml_tensor;

View File

@ -86,6 +86,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32); GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
@ -114,6 +115,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rope_f32); GGML_METAL_DECL_KERNEL(rope_f32);
GGML_METAL_DECL_KERNEL(rope_f16); GGML_METAL_DECL_KERNEL(rope_f16);
GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(im2col_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f16_f16); GGML_METAL_DECL_KERNEL(cpy_f16_f16);
@ -126,7 +128,7 @@ struct ggml_metal_context {
// MSL code // MSL code
// TODO: move the contents here when ready // TODO: move the contents here when ready
// for now it is easier to work in a separate file // for now it is easier to work in a separate file
static NSString * const msl_library_source = @"see metal.metal"; //static NSString * const msl_library_source = @"see metal.metal";
// Here to assist with NSBundle Path Hack // Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject @interface GGMLMetalClass : NSObject
@ -142,7 +144,8 @@ void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_dat
ggml_metal_log_user_data = user_data; ggml_metal_log_user_data = user_data;
} }
static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){ GGML_ATTRIBUTE_FORMAT(2, 3)
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
if (ggml_metal_log_callback != NULL) { if (ggml_metal_log_callback != NULL) {
va_list args; va_list args;
va_start(args, format); va_start(args, format);
@ -210,7 +213,13 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
} else { } else {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (sourcePath == nil) { if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__); GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal"; sourcePath = @"ggml-metal.metal";
@ -281,6 +290,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32); GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
@ -311,6 +321,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rope_f32); GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(im2col_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f16_f16); GGML_METAL_ADD_KERNEL(cpy_f16_f16);
@ -329,15 +340,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) { for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) { if ([ctx->device supportsFamily:i]) {
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i); GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
break; break;
} }
} }
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) { if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else { } else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__); GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
} }
@ -380,6 +391,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm); GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32); GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
@ -410,6 +422,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rope_f32); GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32); GGML_METAL_DEL_KERNEL(alibi_f32);
GGML_METAL_DEL_KERNEL(im2col_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f16); GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32); GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f16_f16); GGML_METAL_DEL_KERNEL(cpy_f16_f16);
@ -467,6 +480,10 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
const int64_t tsize = ggml_nbytes(t); const int64_t tsize = ggml_nbytes(t);
if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
ctx = t->buffer->backend->context;
}
// find the view that contains the tensor fully // find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) { for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
@ -524,11 +541,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) { if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers; ++ctx->n_buffers;
} else { } else {
@ -548,11 +565,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) { if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false; return false;
} }
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) { if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
@ -567,7 +584,7 @@ bool ggml_metal_add_buffer(
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__); GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else { } else {
GGML_METAL_LOG_INFO("\n"); GGML_METAL_LOG_INFO("\n");
} }
@ -1024,7 +1041,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:MAX(16, nth/32*sizeof(float)) atIndex:0]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
@ -1133,6 +1150,7 @@ void ggml_metal_graph_compute(
switch (src0t) { switch (src0t) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
GGML_ASSERT(src1t == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4; nrows = 4;
} break; } break;
@ -1140,6 +1158,7 @@ void ggml_metal_graph_compute(
{ {
nth0 = 32; nth0 = 32;
nth1 = 1; nth1 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) { if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
@ -1149,6 +1168,10 @@ void ggml_metal_graph_compute(
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
nrows = 4; nrows = 4;
} }
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
nrows = 4;
}
} break; } break;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
{ {
@ -1336,7 +1359,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows = ggml_nrows(src0);
@ -1355,7 +1378,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:MAX(16, nth*sizeof(float)) atIndex:0]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0); const int64_t nrows = ggml_nrows(src0);
@ -1410,8 +1433,7 @@ void ggml_metal_graph_compute(
const int n_past = ((int32_t *) dst->op_params)[0]; const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1]; const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2]; const int mode = ((int32_t *) dst->op_params)[2];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
@ -1459,6 +1481,58 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
case GGML_OP_IM2COL:
{
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int32_t N = src1->ne[is_2D ? 3 : 2];
const int32_t IC = src1->ne[is_2D ? 2 : 1];
const int32_t IH = is_2D ? src1->ne[1] : 1;
const int32_t IW = src1->ne[0];
const int32_t KH = is_2D ? src0->ne[1] : 1;
const int32_t KW = src0->ne[0];
const int32_t OH = is_2D ? dst->ne[2] : 1;
const int32_t OW = dst->ne[1];
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
} break;
case GGML_OP_DUP: case GGML_OP_DUP:
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_CONT: case GGML_OP_CONT:

View File

@ -844,6 +844,79 @@ kernel void kernel_mul_mv_f32_f32(
} }
} }
#define N_F16_F16 4
kernel void kernel_mul_mv_f16_f16(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F16_F16;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
if (ne00 < 128) {
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (half) x[i] * (half) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F16; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
device const half4 * y4 = (device const half4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
}
kernel void kernel_mul_mv_f16_f32_1row( kernel void kernel_mul_mv_f16_f32_1row(
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
@ -1229,6 +1302,39 @@ kernel void kernel_rope(
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>; template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>; template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
kernel void kernel_im2col_f16(
device const float * x,
device half * dst,
constant int32_t & ofs0,
constant int32_t & ofs1,
constant int32_t & IW,
constant int32_t & IH,
constant int32_t & CHW,
constant int32_t & s0,
constant int32_t & s1,
constant int32_t & p0,
constant int32_t & p1,
constant int32_t & d0,
constant int32_t & d1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
const int32_t offset_dst =
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
kernel void kernel_cpy_f16_f16( kernel void kernel_cpy_f16_f16(
device const half * src0, device const half * src0,
device half * dst, device half * dst,

View File

@ -14,32 +14,12 @@
// //
#include <arm_neon.h> #include <arm_neon.h>
#if !defined(__aarch64__)
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
#endif
#else #else
#ifdef __wasm_simd128__ #ifdef __wasm_simd128__
#include <wasm_simd128.h> #include <wasm_simd128.h>
#else #else
#ifdef __POWER9_VECTOR__ #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
#include <altivec.h> #include <altivec.h>
#undef bool #undef bool
#define bool _Bool #define bool _Bool
@ -47,13 +27,15 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#if defined(_MSC_VER) || defined(__MINGW32__) #if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h> #include <intrin.h>
#else #else
#if !defined(__riscv) && !defined(__s390__) #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h> #include <immintrin.h>
#endif #endif
#endif #endif
#endif #endif
#endif #endif
#endif #endif
#endif
#ifdef __riscv_v_intrinsic #ifdef __riscv_v_intrinsic
#include <riscv_vector.h> #include <riscv_vector.h>
@ -61,6 +43,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#undef MIN #undef MIN
#undef MAX #undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
@ -283,9 +266,31 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON) #if defined(__ARM_NEON)
#if !defined(__aarch64__) #if !defined(__aarch64__)
// 64-bit compatibility
// vaddvq_s16
// vpaddq_s16
// vaddvq_s32
// vaddvq_f32
// vmaxvq_f32
// vcvtnq_s32_f32
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
return vcombine_s16(a0, b0);
}
inline static int32_t vaddvq_s32(int32x4_t v) { inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
} }
@ -311,6 +316,96 @@ inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
return res; return res;
} }
// vld1q_s16_x2
// vld1q_u8_x2
// vld1q_u8_x4
// vld1q_s8_x2
// vld1q_s8_x4
// TODO: double-check these work correctly
typedef struct ggml_int16x8x2_t {
int16x8_t val[2];
} ggml_int16x8x2_t;
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
ggml_int16x8x2_t res;
res.val[0] = vld1q_s16(ptr + 0);
res.val[1] = vld1q_s16(ptr + 8);
return res;
}
typedef struct ggml_uint8x16x2_t {
uint8x16_t val[2];
} ggml_uint8x16x2_t;
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
ggml_uint8x16x2_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
return res;
}
typedef struct ggml_uint8x16x4_t {
uint8x16_t val[4];
} ggml_uint8x16x4_t;
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
ggml_uint8x16x4_t res;
res.val[0] = vld1q_u8(ptr + 0);
res.val[1] = vld1q_u8(ptr + 16);
res.val[2] = vld1q_u8(ptr + 32);
res.val[3] = vld1q_u8(ptr + 48);
return res;
}
typedef struct ggml_int8x16x2_t {
int8x16_t val[2];
} ggml_int8x16x2_t;
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
ggml_int8x16x2_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
return res;
}
typedef struct ggml_int8x16x4_t {
int8x16_t val[4];
} ggml_int8x16x4_t;
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
ggml_int8x16x4_t res;
res.val[0] = vld1q_s8(ptr + 0);
res.val[1] = vld1q_s8(ptr + 16);
res.val[2] = vld1q_s8(ptr + 32);
res.val[3] = vld1q_s8(ptr + 48);
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
#define ggml_uint8x16x2_t uint8x16x2_t
#define ggml_uint8x16x4_t uint8x16x4_t
#define ggml_int8x16x2_t int8x16x2_t
#define ggml_int8x16x4_t int8x16x4_t
#define ggml_vld1q_s16_x2 vld1q_s16_x2
#define ggml_vld1q_u8_x2 vld1q_u8_x2
#define ggml_vld1q_u8_x4 vld1q_u8_x4
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#endif #endif
#endif #endif
@ -1273,7 +1368,12 @@ static float make_qkx2_quants(int n, int nmax, const float * restrict x, const f
float max = x[0]; float max = x[0];
float sum_w = weights[0]; float sum_w = weights[0];
float sum_x = sum_w * x[0]; float sum_x = sum_w * x[0];
#ifdef HAVE_BUGGY_APPLE_LINKER
// use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
for (volatile int i = 1; i < n; ++i) {
#else
for (int i = 1; i < n; ++i) { for (int i = 1; i < n; ++i) {
#endif
if (x[i] < min) min = x[i]; if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i]; if (x[i] > max) max = x[i];
float w = weights[i]; float w = weights[i];
@ -3557,7 +3657,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif #endif
int8x16x2_t q2bytes; ggml_int8x16x2_t q2bytes;
uint8_t aux[16]; uint8_t aux[16];
float sum = 0; float sum = 0;
@ -3576,8 +3676,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
vst1q_u8(aux, scales); vst1q_u8(aux, scales);
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4); const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}; const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])), const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0]))); vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])), const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
@ -3605,7 +3705,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#endif #endif
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
q8bytes = vld1q_s8_x2(q8); q8 += 32;\ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\ q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
MULTIPLY_ACCUM_WITH_SCALE((index)); MULTIPLY_ACCUM_WITH_SCALE((index));
@ -3613,9 +3713,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) { for (int j = 0; j < QK_K/128; ++j) {
const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32; const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32; ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
MULTIPLY_ACCUM_WITH_SCALE(0); MULTIPLY_ACCUM_WITH_SCALE(0);
@ -3949,7 +4049,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif #endif
int8x16x4_t q2bytes; ggml_int8x16x4_t q2bytes;
uint32_t aux32[2]; uint32_t aux32[2];
const uint8_t * scales = (const uint8_t *)aux32; const uint8_t * scales = (const uint8_t *)aux32;
@ -3974,7 +4074,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t q2bits = vld1q_u8(q2); const uint8x16_t q2bits = vld1q_u8(q2);
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
@ -4238,7 +4338,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3 = vshlq_n_u8(m0, 3); const uint8x16_t m3 = vshlq_n_u8(m0, 3);
const int8_t m32 = 32; const int8_t m32 = 32;
int8x16x4_t q3bytes; ggml_int8x16x4_t q3bytes;
float sum = 0; float sum = 0;
@ -4250,9 +4350,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].hmask; const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs; const int8_t * restrict q8 = y[i].qs;
uint8x16x2_t qhbits = vld1q_u8_x2(qh); ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
uint8x16x4_t q3h; ggml_uint8x16x4_t q3h;
int32_t isum = 0; int32_t isum = 0;
@ -4268,9 +4368,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) { for (int j = 0; j < QK_K/128; ++j) {
const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32; const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64; const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64; const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2); q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2); q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
@ -4772,7 +4872,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3b = vdupq_n_u8(0x3); const uint8x16_t m3b = vdupq_n_u8(0x3);
const uint8x16_t mh = vdupq_n_u8(4); const uint8x16_t mh = vdupq_n_u8(4);
int8x16x4_t q3bytes; ggml_int8x16x4_t q3bytes;
uint16_t aux16[2]; uint16_t aux16[2];
int8_t * scales = (int8_t *)aux16; int8_t * scales = (int8_t *)aux16;
@ -4781,11 +4881,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int i = 0; i < nb; ++i) { for (int i = 0; i < nb; ++i) {
uint8x16x4_t q3h; ggml_uint8x16x4_t q3h;
const uint8x8_t hbits = vld1_u8(x[i].hmask); const uint8x8_t hbits = vld1_u8(x[i].hmask);
const uint8x16_t q3bits = vld1q_u8(x[i].qs); const uint8x16_t q3bits = vld1q_u8(x[i].qs);
const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
const uint16_t a = *(const uint16_t *)x[i].scales; const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f; aux16[0] = a & 0x0f0f;
@ -5134,8 +5234,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif #endif
int8x16x2_t q4bytes; ggml_int8x16x2_t q4bytes;
int8x16x2_t q8bytes; ggml_int8x16x2_t q8bytes;
float sumf = 0; float sumf = 0;
@ -5170,17 +5270,17 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/64; ++j) { for (int j = 0; j < QK_K/64; ++j) {
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32; const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
#ifdef __ARM_FEATURE_DOTPROD #ifdef __ARM_FEATURE_DOTPROD
q8bytes = vld1q_s8_x2(q8); q8 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi1 += vaddvq_s32(p1) * scales[2*j+0]; sumi1 += vaddvq_s32(p1) * scales[2*j+0];
q8bytes = vld1q_s8_x2(q8); q8 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
@ -5188,7 +5288,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
sumi2 += vaddvq_s32(p2) * scales[2*j+1]; sumi2 += vaddvq_s32(p2) * scales[2*j+1];
#else #else
q8bytes = vld1q_s8_x2(q8); q8 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5197,7 +5297,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0]; sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
q8bytes = vld1q_s8_x2(q8); q8 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5512,8 +5612,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
float sumf = 0; float sumf = 0;
int8x16x2_t q4bytes; ggml_int8x16x2_t q4bytes;
int8x16x4_t q8bytes; ggml_int8x16x4_t q8bytes;
float sum_mins = 0.f; float sum_mins = 0.f;
@ -5534,10 +5634,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const float d = y[i].d * (float)x[i].d[0]; const float d = y[i].d * (float)x[i].d[0];
const uint8x16x2_t q4bits = vld1q_u8_x2(q4); const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
#ifdef __ARM_FEATURE_DOTPROD #ifdef __ARM_FEATURE_DOTPROD
q8bytes = vld1q_s8_x4(q8); q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
@ -5551,7 +5651,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
#else #else
q8bytes = vld1q_s8_x4(q8); q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@ -5785,7 +5885,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif #endif
int8x16x4_t q5bytes; ggml_int8x16x4_t q5bytes;
float sumf = 0; float sumf = 0;
@ -5815,16 +5915,16 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].qh; const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs; const int8_t * restrict q8 = y[i].qs;
uint8x16x2_t qhbits = vld1q_u8_x2(qh); ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
uint8x16x4_t q5h; ggml_uint8x16x4_t q5h;
int32_t sumi = 0; int32_t sumi = 0;
for (int j = 0; j < QK_K/64; ++j) { for (int j = 0; j < QK_K/64; ++j) {
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32; const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@ -6218,8 +6318,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif #endif
int8x16x4_t q5bytes; ggml_int8x16x4_t q5bytes;
uint8x16x4_t q5h; ggml_uint8x16x4_t q5h;
float sumf = 0; float sumf = 0;
@ -6234,8 +6334,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x8_t qhbits = vld1_u8(qh); const uint8x8_t qhbits = vld1_u8(qh);
const uint8x16x2_t q5bits = vld1q_u8_x2(q5); const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
const int8x16x4_t q8bytes = vld1q_s8_x4(q8); const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
@ -6511,8 +6611,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3); const uint8x16_t mone = vdupq_n_u8(3);
int8x16x4_t q6bytes; ggml_int8x16x4_t q6bytes;
uint8x16x4_t q6h; ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) { for (int i = 0; i < nb; ++i) {
@ -6524,9 +6624,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const int8_t * restrict scale = x[i].scales; const int8_t * restrict scale = x[i].scales;
const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const int8x16_t scales = vld1q_s8(scale); const int8x16_t scales = vld1q_s8(scale);
const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}; const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])), const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))), vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
@ -6538,9 +6638,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) { for (int j = 0; j < QK_K/128; ++j) {
uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32; ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64; ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@ -6583,7 +6683,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
scale += 2; scale += 2;
#endif #endif
q8bytes = vld1q_s8_x4(q8); q8 += 64; q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
shifted = vshrq_n_u8(qhbits.val[0], 4); shifted = vshrq_n_u8(qhbits.val[0], 4);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4); q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
@ -6987,8 +7087,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3); const uint8x16_t mone = vdupq_n_u8(3);
int8x16x4_t q6bytes; ggml_int8x16x4_t q6bytes;
uint8x16x4_t q6h; ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) { for (int i = 0; i < nb; ++i) {
@ -7003,8 +7103,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
int32_t isum = 0; int32_t isum = 0;
uint8x16_t qhbits = vld1q_u8(qh); uint8x16_t qhbits = vld1q_u8(qh);
uint8x16x2_t q6bits = vld1q_u8_x2(q6); ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
int8x16x4_t q8bytes = vld1q_s8_x4(q8); ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
uint8x16_t shifted = vshrq_n_u8(qhbits, 2); uint8x16_t shifted = vshrq_n_u8(qhbits, 2);

1155
ggml.c

File diff suppressed because it is too large Load Diff

20
ggml.h
View File

@ -403,13 +403,8 @@ extern "C" {
GGML_OP_ROPE_BACK, GGML_OP_ROPE_BACK,
GGML_OP_ALIBI, GGML_OP_ALIBI,
GGML_OP_CLAMP, GGML_OP_CLAMP,
GGML_OP_CONV_1D,
GGML_OP_CONV_1D_STAGE_0, // internal
GGML_OP_CONV_1D_STAGE_1, // internal
GGML_OP_CONV_TRANSPOSE_1D, GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_CONV_2D, GGML_OP_IM2COL,
GGML_OP_CONV_2D_STAGE_0, // internal
GGML_OP_CONV_2D_STAGE_1, // internal
GGML_OP_CONV_TRANSPOSE_2D, GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D, GGML_OP_POOL_1D,
GGML_OP_POOL_2D, GGML_OP_POOL_2D,
@ -1403,6 +1398,18 @@ extern "C" {
float min, float min,
float max); float max);
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D);
GGML_API struct ggml_tensor * ggml_conv_1d( GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -2038,6 +2045,7 @@ extern "C" {
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id); GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id); GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id); GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id); GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);

View File

@ -70,6 +70,7 @@ class Keys:
ADD_EOS = "tokenizer.ggml.add_eos_token" ADD_EOS = "tokenizer.ggml.add_eos_token"
HF_JSON = "tokenizer.huggingface.json" HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world" RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
# #
@ -90,6 +91,7 @@ class MODEL_ARCH(IntEnum):
REFACT = auto() REFACT = auto()
BERT = auto() BERT = auto()
BLOOM = auto() BLOOM = auto()
STABLELM = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -129,6 +131,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.REFACT: "refact", MODEL_ARCH.REFACT: "refact",
MODEL_ARCH.BERT: "bert", MODEL_ARCH.BERT: "bert",
MODEL_ARCH.BLOOM: "bloom", MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -299,6 +302,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.STABLELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [ MODEL_ARCH.GPT2: [
# TODO # TODO
], ],

View File

@ -221,7 +221,7 @@ class GGUFWriter:
if self.endianess == GGUFEndian.BIG: if self.endianess == GGUFEndian.BIG:
tensor.byteswap(inplace=True) tensor.byteswap(inplace=True)
if self.use_temp_file and self.temp_file is None: if self.use_temp_file and self.temp_file is None:
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
fp.seek(0) fp.seek(0)
self.temp_file = fp self.temp_file = fp
@ -399,6 +399,9 @@ class GGUFWriter:
def add_add_eos_token(self, value: bool) -> None: def add_add_eos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_EOS, value) self.add_bool(Keys.Tokenizer.ADD_EOS, value)
def add_chat_template(self, value: str) -> None:
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = '' pack_prefix = ''
if not skip_pack_prefix: if not skip_pack_prefix:

View File

@ -13,6 +13,7 @@ class SpecialVocab:
merges: list[str] merges: list[str]
add_special_token: dict[str, bool] add_special_token: dict[str, bool]
special_token_ids: dict[str, int] special_token_ids: dict[str, int]
chat_template: str | None
def __init__( def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False, self, path: str | os.PathLike[str], load_merges: bool = False,
@ -24,6 +25,7 @@ class SpecialVocab:
self.n_vocab = n_vocab self.n_vocab = n_vocab
self.load_merges = load_merges self.load_merges = load_merges
self.merges = [] self.merges = []
self.chat_template = None
if special_token_types is not None: if special_token_types is not None:
self.special_token_types = special_token_types self.special_token_types = special_token_types
else: else:
@ -67,6 +69,10 @@ class SpecialVocab:
if not quiet: if not quiet:
print(f'gguf: Setting add_{typ}_token to {value}') print(f'gguf: Setting add_{typ}_token to {value}')
add_handler(value) add_handler(value)
if self.chat_template is not None:
if not quiet:
print(f'gguf: Setting chat_template to {self.chat_template}')
gw.add_chat_template(self.chat_template)
def _load(self, path: Path) -> None: def _load(self, path: Path) -> None:
self._try_load_from_tokenizer_json(path) self._try_load_from_tokenizer_json(path)
@ -117,24 +123,37 @@ class SpecialVocab:
def _try_load_from_tokenizer_json(self, path: Path) -> bool: def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json' tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file(): if tokenizer_file.is_file():
return False
with open(tokenizer_file, encoding = 'utf-8') as f: with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f) tokenizer = json.load(f)
if self.load_merges: if self.load_merges:
merges = tokenizer.get('model', {}).get('merges') merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str): if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges self.merges = merges
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}
tokenizer_config_file = path / 'tokenizer_config.json' tokenizer_config_file = path / 'tokenizer_config.json'
added_tokens = tokenizer.get('added_tokens') if not tokenizer_config_file.is_file():
if added_tokens is None or not tokenizer_config_file.is_file():
return True return True
with open(tokenizer_config_file, encoding = 'utf-8') as f: with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f) tokenizer_config = json.load(f)
chat_template = tokenizer_config.get('chat_template')
if chat_template is None or isinstance(chat_template, str):
self.chat_template = chat_template
else:
print(
f'gguf: WARNING: Bad type for chat_template field in {tokenizer_config_file!r} - ignoring',
file = sys.stderr
)
for typ in self.special_token_types: for typ in self.special_token_types:
add_entry = tokenizer_config.get(f'add_{typ}_token') add_entry = tokenizer_config.get(f'add_{typ}_token')
if isinstance(add_entry, bool): if isinstance(add_entry, bool):
self.add_special_token[typ] = add_entry self.add_special_token[typ] = add_entry
if not added_tokens:
# We will need this to get the content for the token, so if it's empty
# may as well just give up.
continue
entry = tokenizer_config.get(f'{typ}_token') entry = tokenizer_config.get(f'{typ}_token')
if isinstance(entry, str): if isinstance(entry, str):
tc_content = entry tc_content = entry

View File

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "gguf" name = "gguf"
version = "0.5.2" version = "0.6.0"
description = "Read and write ML models in GGUF for GGML" description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"] authors = ["GGML <ggml@ggml.ai>"]
packages = [ packages = [

View File

@ -86,6 +86,7 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8") curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else: else:
curr["value"] = field.parts[-1].tolist()[0] curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors): for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = { tensors[tensor.name] = {
"index": idx, "index": idx,

541
llama.cpp
View File

@ -93,7 +93,7 @@
#define LLAMA_ATTRIBUTE_FORMAT(...) #define LLAMA_ATTRIBUTE_FORMAT(...)
#endif #endif
#define LLAMA_MAX_NODES 4096 #define LLAMA_MAX_NODES 8192
// //
// logging // logging
@ -194,6 +194,7 @@ enum llm_arch {
LLM_ARCH_PERSIMMON, LLM_ARCH_PERSIMMON,
LLM_ARCH_REFACT, LLM_ARCH_REFACT,
LLM_ARCH_BLOOM, LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -209,6 +210,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_PERSIMMON, "persimmon" }, { LLM_ARCH_PERSIMMON, "persimmon" },
{ LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_REFACT, "refact" },
{ LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_BLOOM, "bloom" },
{ LLM_ARCH_STABLELM, "stablelm" },
}; };
enum llm_kv { enum llm_kv {
@ -255,6 +257,8 @@ enum llm_kv {
LLM_KV_TOKENIZER_UNK_ID, LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID, LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV, LLM_KV_TOKENIZER_RWKV,
}; };
@ -303,6 +307,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
}; };
@ -497,6 +503,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
}, },
}, },
{
LLM_ARCH_STABLELM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -581,6 +606,60 @@ static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
return LLAMA_ROPE_SCALING_UNSPECIFIED; return LLAMA_ROPE_SCALING_UNSPECIFIED;
} }
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
replace_all(val, "\\", "\\\\");
replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
// //
// ggml helpers // ggml helpers
// //
@ -1082,9 +1161,9 @@ enum e_model {
MODEL_70B, MODEL_70B,
}; };
static const size_t kB = 1024; static const size_t kiB = 1024;
static const size_t MB = 1024*kB; static const size_t MiB = 1024*kiB;
static const size_t GB = 1024*MB; static const size_t GiB = 1024*MiB;
struct llama_hparams { struct llama_hparams {
bool vocab_only; bool vocab_only;
@ -1221,6 +1300,7 @@ struct llama_kv_cache {
// cannot be freely changed after a slot has been allocated. // cannot be freely changed after a slot has been allocated.
uint32_t head = 0; uint32_t head = 0;
uint32_t size = 0; uint32_t size = 0;
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build // computed before each graph build
uint32_t n = 0; uint32_t n = 0;
@ -1275,6 +1355,9 @@ struct llama_vocab {
id special_sep_id = -1; id special_sep_id = -1;
id special_pad_id = -1; id special_pad_id = -1;
int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
id linefeed_id = 13; id linefeed_id = 13;
id special_prefix_id = 32007; id special_prefix_id = 32007;
id special_middle_id = 32009; id special_middle_id = 32009;
@ -1319,6 +1402,9 @@ struct llama_model {
int n_gpu_layers; int n_gpu_layers;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
// context // context
struct ggml_context * ctx = NULL; struct ggml_context * ctx = NULL;
@ -1442,6 +1528,7 @@ static bool llama_kv_cache_init(
cache.head = 0; cache.head = 0;
cache.size = n_ctx; cache.size = n_ctx;
cache.used = 0;
cache.cells.clear(); cache.cells.clear();
cache.cells.resize(n_ctx); cache.cells.resize(n_ctx);
@ -1483,7 +1570,7 @@ static bool llama_kv_cache_init(
vram_kv_cache += ggml_nbytes(cache.k); vram_kv_cache += ggml_nbytes(cache.k);
} }
if (vram_kv_cache > 0) { if (vram_kv_cache > 0) {
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
} }
} }
#endif #endif
@ -1543,6 +1630,8 @@ static bool llama_kv_cache_find_slot(
} }
} }
cache.used += n_tokens;
return true; return true;
} }
@ -1563,6 +1652,7 @@ static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
} }
cache.head = 0; cache.head = 0;
cache.used = 0;
} }
static void llama_kv_cache_seq_rm( static void llama_kv_cache_seq_rm(
@ -1585,6 +1675,9 @@ static void llama_kv_cache_seq_rm(
continue; continue;
} }
if (cache.cells[i].seq_id.empty()) { if (cache.cells[i].seq_id.empty()) {
// keep count of the number of used cells
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
} }
@ -1592,7 +1685,7 @@ static void llama_kv_cache_seq_rm(
} }
// If we freed up a slot, set head to it so searching can start there. // If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size) cache.head = new_head; if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
} }
static void llama_kv_cache_seq_cp( static void llama_kv_cache_seq_cp(
@ -1618,6 +1711,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
for (uint32_t i = 0; i < cache.size; ++i) { for (uint32_t i = 0; i < cache.size; ++i) {
if (!cache.cells[i].has_seq_id(seq_id)) { if (!cache.cells[i].has_seq_id(seq_id)) {
if (cache.cells[i].pos >= 0) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
@ -1628,7 +1722,7 @@ static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id
} }
// If we freed up a slot, set head to it so searching can start there. // If we freed up a slot, set head to it so searching can start there.
if (new_head != cache.size) cache.head = new_head; if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
} }
static void llama_kv_cache_seq_shift( static void llama_kv_cache_seq_shift(
@ -1649,6 +1743,7 @@ static void llama_kv_cache_seq_shift(
cache.cells[i].delta += delta; cache.cells[i].delta += delta;
if (cache.cells[i].pos < 0) { if (cache.cells[i].pos < 0) {
if (!cache.cells[i].seq_id.empty()) cache.used--;
cache.cells[i].pos = -1; cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i; if (new_head == cache.size) new_head = i;
@ -1799,8 +1894,19 @@ struct llama_model_loader {
for (int i = 0; i < n_kv; i++) { for (int i = 0; i < n_kv; i++) {
const char * name = gguf_get_key(ctx_gguf, i); const char * name = gguf_get_key(ctx_gguf, i);
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
: gguf_type_name(type);
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type)); std::string value = gguf_kv_to_str(ctx_gguf, i);
const size_t MAX_VALUE_LEN = 40;
if (value.size() > MAX_VALUE_LEN) {
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
}
replace_all(value, "\n", "\\n");
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
} }
// print type counts // print type counts
@ -2098,6 +2204,17 @@ static void llm_load_hparams(
auto & hparams = model.hparams; auto & hparams = model.hparams;
// get metadata as string
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
enum gguf_type type = gguf_get_kv_type(ctx, i);
if (type == GGUF_TYPE_ARRAY) {
continue;
}
const char * name = gguf_get_key(ctx, i);
const std::string value = gguf_kv_to_str(ctx, i);
model.gguf_kv.emplace(name, value);
}
// get general kv // get general kv
GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME)); GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
@ -2242,6 +2359,16 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_STABLELM:
{
GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_3B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0; default: (void)0;
} }
@ -2383,6 +2510,23 @@ static void llm_load_vocab(
__func__, key.c_str(), id, old_id); __func__, key.c_str(), id, old_id);
id = old_id; id = old_id;
} }
}
// Handle add_bos_token and add_eos_token
std::string key = kv(LLM_KV_TOKENIZER_ADD_BOS);
int kid = gguf_find_key(ctx, key.c_str());
enum gguf_type ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
vocab.special_add_bos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
}
key = kv(LLM_KV_TOKENIZER_ADD_EOS);
kid = gguf_find_key(ctx, key.c_str());
ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
vocab.special_add_eos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
} }
} }
@ -2514,7 +2658,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
if (ml.n_bytes < GB) { if (ml.n_bytes < GiB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else { } else {
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
@ -2553,7 +2697,7 @@ static void llm_load_tensors(
ml.calc_sizes(ctx_size, mmapped_size); ml.calc_sizes(ctx_size, mmapped_size);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context // create the ggml context
{ {
@ -3113,6 +3257,81 @@ static void llm_load_tensors(
} }
} }
} break; } break;
case LLM_ARCH_STABLELM:
{
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
// output
{
ggml_backend_type backend_norm;
ggml_backend_type backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = llama_backend_offload;
#else
backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload;
#endif // _WIN32
backend_output = llama_backend_offload_split;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
/*
llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ]
*/
const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
}
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
} }
@ -3127,7 +3346,7 @@ static void llm_load_tensors(
ctx_size + ctx_size +
mmapped_size - vram_weights; // weights in VRAM not in memory mmapped_size - vram_weights; // weights in VRAM not in memory
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
@ -3146,7 +3365,7 @@ static void llm_load_tensors(
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
#else #else
(void) n_gpu_layers; (void) n_gpu_layers;
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
@ -4657,6 +4876,119 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_stablelm() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
cb(inpL, "inp_embd", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
cb(inp_pos, "inp_pos", -1);
// KQ_scale
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
cb(KQ_scale, "KQ_scale", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed
if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, hparams.n_rot, freq_base, freq_scale, cb);
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
model.layers[il].wo, NULL,
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm,
model.output_norm_b,
LLM_NORM, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
}; };
// //
@ -5126,6 +5458,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_mpt(); result = llm.build_mpt();
} break; } break;
case LLM_ARCH_STABLELM:
{
result = llm.build_stablelm();
} break;
default: default:
GGML_ASSERT(false); GGML_ASSERT(false);
} }
@ -5235,6 +5571,12 @@ static int llama_decode_internal(
batch.seq_id = seq_id_arr.data(); batch.seq_id = seq_id_arr.data();
} }
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (kv_self.head > kv_self.used + 2*n_tokens) {
kv_self.head = 0;
}
if (!llama_kv_cache_find_slot(kv_self, batch)) { if (!llama_kv_cache_find_slot(kv_self, batch)) {
return 1; return 1;
} }
@ -5245,7 +5587,7 @@ static int llama_decode_internal(
//kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA? //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
//printf("kv_self.n = %d\n", kv_self.n); //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
ggml_allocr_reset(lctx.alloc); ggml_allocr_reset(lctx.alloc);
@ -5301,7 +5643,8 @@ static int llama_decode_internal(
model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_FALCON ||
model.arch == LLM_ARCH_REFACT || model.arch == LLM_ARCH_REFACT ||
model.arch == LLM_ARCH_MPT || model.arch == LLM_ARCH_MPT ||
model.arch == LLM_ARCH_STARCODER; model.arch == LLM_ARCH_STARCODER ||
model.arch == LLM_ARCH_STABLELM;
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
@ -6110,7 +6453,10 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
// by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
// and passing 'add space prefix' as bool argument // and passing 'add space prefix' as bool argument
// //
auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length); auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
if (&fragment == &fragment_buffer.front()) {
raw_text = " " + raw_text; // prefix with space if the first token is not special
}
#ifdef PRETOKENIZERDEBUG #ifdef PRETOKENIZERDEBUG
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
@ -7762,7 +8108,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
workers.clear(); workers.clear();
} }
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0; int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) { for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i]; hist_all[i] += hist_cur[i];
@ -8309,7 +8655,7 @@ struct llama_context * llama_new_context_with_model(
{ {
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
} }
// resized during inference // resized during inference
@ -8354,7 +8700,7 @@ struct llama_context * llama_new_context_with_model(
// measure memory requirements for the graph // measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
// recreate allocator with exact memory requirements // recreate allocator with exact memory requirements
ggml_allocr_free(ctx->alloc); ggml_allocr_free(ctx->alloc);
@ -8368,7 +8714,7 @@ struct llama_context * llama_new_context_with_model(
#endif #endif
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
ggml_cuda_set_scratch_size(alloc_size); ggml_cuda_set_scratch_size(alloc_size);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
// calculate total VRAM usage // calculate total VRAM usage
auto add_tensor = [](const ggml_tensor * t, size_t & size) { auto add_tensor = [](const ggml_tensor * t, size_t & size) {
@ -8388,7 +8734,7 @@ struct llama_context * llama_new_context_with_model(
size_t ctx_vram_size = alloc_size + kv_vram_size; size_t ctx_vram_size = alloc_size + kv_vram_size;
size_t total_vram_size = model_vram_size + ctx_vram_size; size_t total_vram_size = model_vram_size + ctx_vram_size;
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__, LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
total_vram_size / 1024.0 / 1024.0, total_vram_size / 1024.0 / 1024.0,
model_vram_size / 1024.0 / 1024.0, model_vram_size / 1024.0 / 1024.0,
ctx_vram_size / 1024.0 / 1024.0); ctx_vram_size / 1024.0 / 1024.0);
@ -8412,7 +8758,7 @@ struct llama_context * llama_new_context_with_model(
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \ #define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \ if (!(result)) { \
@ -8498,6 +8844,45 @@ float llama_rope_freq_scale_train(const struct llama_model * model) {
return model->hparams.rope_freq_scale_train; return model->hparams.rope_freq_scale_train;
} }
int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int llama_model_meta_count(const struct llama_model * model) {
return (int)model->gguf_kv.size();
}
int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->first.c_str());
}
int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
if (i < 0 || i >= (int)model->gguf_kv.size()) {
if (buf_size > 0) {
buf[0] = '\0';
}
return -1;
}
auto it = model->gguf_kv.begin();
std::advance(it, i);
return snprintf(buf, buf_size, "%s", it->second.c_str());
}
int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
return snprintf(buf, buf_size, "%s %s %s", return snprintf(buf, buf_size, "%s %s %s",
llama_model_arch_name(model->arch).c_str(), llama_model_arch_name(model->arch).c_str(),
@ -8556,8 +8941,107 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
} }
} }
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,
/*.n_max_seq = */ n_max_seq,
/*.token_count = */ 0,
/*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
/*.max_contiguous = */ 0,
/*.max_contiguous_idx = */ -1,
/*.cells = */ nullptr,
/*.cells_sequences = */ nullptr,
};
return result;
}
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
if (view->cells != nullptr) {
free(view->cells);
view->cells = nullptr;
}
if (view->cells_sequences != nullptr) {
free(view->cells_sequences);
view->cells_sequences = nullptr;
}
}
void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
view->n_cells = int32_t(ctx->kv_self.size);
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
view->cells = (struct llama_kv_cache_view_cell *)p;
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
view->cells_sequences = (llama_seq_id *)p;
}
const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
llama_kv_cache_view_cell * c_curr = view->cells;
llama_seq_id * cs_curr = view->cells_sequences;
int32_t used_cells = 0;
int32_t token_count = 0;
int32_t curr_contig_idx = -1;
uint32_t max_contig = 0;
int32_t max_contig_idx = -1;
for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
const size_t curr_size = kv_cells[i].seq_id.size();
token_count += curr_size;
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
if (curr_size > 0) {
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
max_contig = i - curr_contig_idx;
max_contig_idx = curr_contig_idx;
}
curr_contig_idx = -1;
} else if (curr_contig_idx < 0) {
curr_contig_idx = i;
}
int seq_idx = 0;
for (const llama_seq_id it : kv_cells[i].seq_id) {
if (seq_idx >= view->n_max_seq) {
break;
}
cs_curr[seq_idx] = it;
seq_idx++;
}
if (seq_idx != 0) {
used_cells++;
}
for (; seq_idx < view->n_max_seq; seq_idx++) {
cs_curr[seq_idx] = -1;
}
}
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
max_contig_idx = curr_contig_idx;
max_contig = kv_cells.size() - curr_contig_idx;
}
view->max_contiguous = max_contig;
view->max_contiguous_idx = max_contig_idx;
view->token_count = token_count;
view->used_cells = used_cells;
if (uint32_t(used_cells) != ctx->kv_self.used) {
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
__func__, ctx->kv_self.used, used_cells);
}
}
int llama_get_kv_cache_token_count(const struct llama_context * ctx) { int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->kv_self.head; int result = 0;
for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
result += ctx->kv_self.cells[i].seq_id.size();
}
return result;
}
int llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
return ctx->kv_self.used;
} }
void llama_kv_cache_clear(struct llama_context * ctx) { void llama_kv_cache_clear(struct llama_context * ctx) {
@ -8727,10 +9211,12 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
const size_t kv_buf_size = kv_self.buf.size; const size_t kv_buf_size = kv_self.buf.size;
const uint32_t kv_head = kv_self.head; const uint32_t kv_head = kv_self.head;
const uint32_t kv_size = kv_self.size; const uint32_t kv_size = kv_self.size;
const uint32_t kv_used = kv_self.used;
data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
data_ctx->write(&kv_head, sizeof(kv_head)); data_ctx->write(&kv_head, sizeof(kv_head));
data_ctx->write(&kv_size, sizeof(kv_size)); data_ctx->write(&kv_size, sizeof(kv_size));
data_ctx->write(&kv_used, sizeof(kv_used));
if (kv_buf_size) { if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k); const size_t elt_size = ggml_element_size(kv_self.k);
@ -8853,10 +9339,12 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
size_t kv_buf_size; size_t kv_buf_size;
uint32_t kv_head; uint32_t kv_head;
uint32_t kv_size; uint32_t kv_size;
uint32_t kv_used;
memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
if (kv_buf_size) { if (kv_buf_size) {
GGML_ASSERT(kv_self.buf.size == kv_buf_size); GGML_ASSERT(kv_self.buf.size == kv_buf_size);
@ -8891,6 +9379,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ctx->kv_self.head = kv_head; ctx->kv_self.head = kv_head;
ctx->kv_self.size = kv_size; ctx->kv_self.size = kv_size;
ctx->kv_self.used = kv_used;
ctx->kv_self.cells.resize(kv_size); ctx->kv_self.cells.resize(kv_size);
@ -9139,6 +9628,14 @@ llama_token llama_token_nl(const struct llama_model * model) {
return model->vocab.linefeed_id; return model->vocab.linefeed_id;
} }
int llama_add_bos_token(const struct llama_model * model) {
return model->vocab.special_add_bos;
}
int llama_add_eos_token(const struct llama_model * model) {
return model->vocab.special_add_eos;
}
llama_token llama_token_prefix(const struct llama_model * model) { llama_token llama_token_prefix(const struct llama_model * model) {
return model->vocab.special_prefix_id; return model->vocab.special_prefix_id;
} }

80
llama.h
View File

@ -301,6 +301,23 @@ extern "C" {
// Get the model's RoPE frequency scaling factor // Get the model's RoPE frequency scaling factor
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model); LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
// Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure
// - GGUF array values are not supported by these functions
// Get metadata value as a string by key name
LLAMA_API int llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
// Get the number of metadata key/value pairs
LLAMA_API int llama_model_meta_count(const struct llama_model * model);
// Get metadata key name by index
LLAMA_API int llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get metadata value as a string by index
LLAMA_API int llama_model_meta_val_str_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size);
// Get a string describing the model type // Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
@ -344,9 +361,60 @@ extern "C" {
// KV cache // KV cache
// //
// Returns the number of tokens in the KV cache // Information associated with an individual cell in the KV cache view.
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx), struct llama_kv_cache_view_cell {
"avoid using this, it will be removed in the future, instead - count the tokens in user code"); // The position for this cell. Takes KV cache shifts into account.
// May be negative if the cell is not populated.
llama_pos pos;
};
// An updateable view of the KV cache.
struct llama_kv_cache_view {
// Number of KV cache cells. This will be the same as the context size.
int32_t n_cells;
// Maximum number of sequences that can exist in a cell. It's not an error
// if there are more sequences in a cell than this value, however they will
// not be visible in the view cells_sequences.
int32_t n_max_seq;
// Number of tokens in the cache. For example, if there are two populated
// cells, the first with 1 sequence id in it and the second with 2 sequence
// ids then you'll have 3 tokens.
int32_t token_count;
// Number of populated cache cells.
int32_t used_cells;
// Maximum contiguous empty slots in the cache.
int32_t max_contiguous;
// Index to the start of the max_contiguous slot range. Can be negative
// when cache is full.
int32_t max_contiguous_idx;
// Information for an individual cell.
struct llama_kv_cache_view_cell * cells;
// The sequences for each cell. There will be n_max_seq items per cell.
llama_seq_id * cells_sequences;
};
// Create an empty KV cache view. (use only for debugging purposes)
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
// Free a KV cache view. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int llama_get_kv_cache_used_cells(const struct llama_context * ctx);
// Clear the KV cache // Clear the KV cache
LLAMA_API void llama_kv_cache_clear( LLAMA_API void llama_kv_cache_clear(
@ -517,6 +585,12 @@ extern "C" {
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens // codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle

Binary file not shown.

View File

@ -33,9 +33,11 @@ llama_build_executable(test-tokenizer-1-bpe.cpp)
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
llama_test_executable(test-tokenizer-1-stablelm-3b-4e1t test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-stablelm-3b-4e1t.gguf)
llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf) llama_test_executable(test-tokenizer-1-gpt-neox test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) llama_test_executable(test-tokenizer-1-refact test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) llama_test_executable(test-tokenizer-1-starcoder test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
# llama_test_executable(test-tokenizer-1-bloom test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-bloom.gguf) # BIG
llama_build_and_test_executable(test-grammar-parser.cpp) llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp) llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW llama_build_and_test_executable(test-grad0.cpp) # SLOW

View File

@ -1,7 +1,5 @@
# tests with BPE tokenizer # tests with BPE tokenizer
import os
import sys
import argparse import argparse
from transformers import AutoTokenizer from transformers import AutoTokenizer
@ -43,7 +41,7 @@ tests = [
" Hello\n Hello", " Hello\n Hello",
"\n =", "\n =",
"' era", "' era",
] ]
for text in tests: for text in tests:
print('text: ', text) print('text: ', text)

View File

@ -1,7 +1,5 @@
# tests with SPM tokenizer # tests with SPM tokenizer
import os
import sys
import argparse import argparse
from sentencepiece import SentencePieceProcessor from sentencepiece import SentencePieceProcessor
@ -41,7 +39,7 @@ tests = [
" Hello", " Hello",
" Hello", " Hello",
" Hello\n Hello", " Hello\n Hello",
] ]
for text in tests: for text in tests: