From 9b31a40c6ddabe552875b811d7127aa039ca9703 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Thu, 27 Jun 2024 01:50:09 +0200 Subject: [PATCH] clip : suppress unused variable warnings (#8105) * clip : suppress unused variable warnings This commit suppresses unused variable warnings for the variables e in the catch blocks. The motivation for this change is to suppress the warnings that are generated on Windows when using the MSVC compiler. The warnings are not displayed when using GCC because GCC will mark all catch parameters as used. Signed-off-by: Daniel Bevenius * squash! clip : suppress unused variable warnings Remove e (/*e*/) instead instead of using GGML_UNUSED. --------- Signed-off-by: Daniel Bevenius --- examples/llava/clip.cpp | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 95fbe3d02..d6882eec3 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -1121,20 +1121,20 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { } if (n < 32) hparams.image_grid_pinpoints[n] = 0; - } catch (std::runtime_error & e) { + } catch (std::runtime_error & /*e*/) { hparams.image_grid_pinpoints[0]=0; } try { int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); - } catch (std::runtime_error & e) { + } catch (std::runtime_error & /*e*/) { strcpy(hparams.mm_patch_merge_type, "flat"); } try { hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 - } catch(const std::exception& e) { + } catch(const std::exception& /*e*/) { hparams.image_crop_resolution = hparams.image_size; } @@ -1173,7 +1173,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { try { vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); new_clip->has_class_embedding = true; - } catch (const std::exception& e) { + } catch (const std::exception& /*e*/) { new_clip->has_class_embedding = false; } @@ -1181,7 +1181,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); new_clip->has_pre_norm = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_pre_norm = false; } @@ -1189,21 +1189,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); new_clip->has_post_norm = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_post_norm = false; } try { vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS); new_clip->has_patch_bias = true; - } catch (std::exception & e) { + } catch (std::exception & /*e*/) { new_clip->has_patch_bias = false; } try { vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); - } catch(const std::exception& e) { + } catch(const std::exception& /*e*/) { LOG_TEE("%s: failed to load vision model tensors\n", __func__); } @@ -1215,26 +1215,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { // Yi-type llava vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // missing in Yi-type llava vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { // Yi-type llava vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } try { vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__); - } catch (std::runtime_error & e) { } + } catch (std::runtime_error & /*e*/) { } } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));