mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
server: continue to update other slots on embedding concurrent request (#5699)
* server: #5655 - continue to update other slots on embedding concurrent request. * server: tests: add multi users embeddings as fixed * server: tests: adding OAI compatible embedding concurrent endpoint * server: tests: adding OAI compatible embedding with multiple inputs
This commit is contained in:
parent
4c4cb30736
commit
9e359a4f47
@ -1836,7 +1836,7 @@ struct llama_server_context
|
||||
send_embedding(slot);
|
||||
slot.release();
|
||||
slot.i_batch = -1;
|
||||
return true;
|
||||
continue;
|
||||
}
|
||||
|
||||
completion_token_output result;
|
||||
|
@ -1,36 +1,4 @@
|
||||
# List of ongoing issues
|
||||
@bug
|
||||
Feature: Issues
|
||||
# Issue #5655
|
||||
Scenario: Multi users embeddings
|
||||
Given a server listening on localhost:8080
|
||||
And a model file stories260K.gguf
|
||||
And a model alias tinyllama-2
|
||||
And 42 as server seed
|
||||
And 64 KV cache size
|
||||
And 2 slots
|
||||
And continuous batching
|
||||
And embeddings extraction
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
Given concurrent embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
# No confirmed issue at the moment
|
||||
|
@ -8,6 +8,7 @@ Feature: Parallel
|
||||
And 42 as server seed
|
||||
And 64 KV cache size
|
||||
And 2 slots
|
||||
And embeddings extraction
|
||||
And continuous batching
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
@ -75,3 +76,48 @@ Feature: Parallel
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted
|
||||
|
||||
Scenario: Multi users embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long story about AI.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another very long music lyrics.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write a very long joke.
|
||||
"""
|
||||
Given concurrent embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
|
||||
Scenario: Multi users OAI compatibility embeddings
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the biggest US city ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is the capital of Bulgaria ?
|
||||
"""
|
||||
And a model tinyllama-2
|
||||
Given concurrent OAI embedding requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all embeddings are generated
|
||||
|
@ -60,6 +60,19 @@ Feature: llama.cpp server
|
||||
"""
|
||||
Then embeddings are generated
|
||||
|
||||
Scenario: OAI Embeddings compatibility with multiple inputs
|
||||
Given a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
In which country Paris is located ?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Is Madrid the capital of Spain ?
|
||||
"""
|
||||
When an OAI compatible embeddings computation request for multiple inputs
|
||||
Then embeddings are generated
|
||||
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
When tokenizing:
|
||||
|
@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import collections
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
@ -261,35 +262,35 @@ def step_a_prompt_prompt(context, prompt):
|
||||
@step(u'concurrent completion requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_completion_requests(context):
|
||||
await concurrent_completion_requests(context,
|
||||
request_completion,
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key if hasattr(context,
|
||||
'user_api_key') else None)
|
||||
await concurrent_requests(context,
|
||||
request_completion,
|
||||
# prompt is inserted automatically
|
||||
context.base_url,
|
||||
debug=context.debug,
|
||||
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
|
||||
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key if hasattr(context,
|
||||
'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_completion_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
# user_prompt is inserted automatically
|
||||
context.system_prompt,
|
||||
context.base_url,
|
||||
True, # async_client
|
||||
model=context.model
|
||||
if hasattr(context, 'model') else None,
|
||||
n_predict=context.n_predict
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
server_seed=context.server_seed
|
||||
if hasattr(context, 'server_seed') else None,
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted')
|
||||
@ -316,36 +317,58 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
||||
@step(u'embeddings are computed for')
|
||||
@async_run_until_complete
|
||||
async def step_compute_embedding(context):
|
||||
content = context.text
|
||||
base_url = context.base_url
|
||||
context.embeddings = await request_embedding(content, base_url)
|
||||
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'embeddings are generated')
|
||||
def step_assert_embeddings(context):
|
||||
assert_embeddings(context.embeddings)
|
||||
if len(context.prompts) == 0:
|
||||
assert_embeddings(context.embeddings)
|
||||
else:
|
||||
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
|
||||
f"context.prompts={context.prompts}\n"
|
||||
f"context.embeddings={context.embeddings}")
|
||||
for embedding in context.embeddings:
|
||||
context.prompts.pop()
|
||||
assert_embeddings(embedding)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for')
|
||||
def step_oai_compute_embedding(context):
|
||||
openai.api_key = 'nope' # openai client always expects an api_keu
|
||||
if context.user_api_key is not None:
|
||||
openai.api_key = context.user_api_key
|
||||
openai.api_base = f'{context.base_url}/v1'
|
||||
embeddings = openai.Embedding.create(
|
||||
model=context.model,
|
||||
input=context.text,
|
||||
)
|
||||
context.embeddings = embeddings
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings(context):
|
||||
context.embeddings = await request_oai_embeddings(context.text,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for multiple inputs')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings_multiple_inputs(context):
|
||||
context.embeddings = await request_oai_embeddings(context.prompts,
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'concurrent embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_embedding_requests(context):
|
||||
await concurrent_completion_requests(context,
|
||||
request_embedding,
|
||||
# prompt is inserted automatically
|
||||
context.base_url)
|
||||
await concurrent_requests(context,
|
||||
request_embedding,
|
||||
# prompt is inserted automatically
|
||||
base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'concurrent OAI embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_oai_embedding_requests(context):
|
||||
await concurrent_requests(context,
|
||||
request_oai_embeddings,
|
||||
# prompt is inserted automatically
|
||||
base_url=context.base_url,
|
||||
async_client=True,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'all embeddings are generated')
|
||||
@ -401,7 +424,7 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
|
||||
assert context.options_response.headers[cors_header] == cors_header_value
|
||||
|
||||
|
||||
async def concurrent_completion_requests(context, f_completion, *args, **kwargs):
|
||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
n_prompts = len(context.prompts)
|
||||
if context.debug:
|
||||
print(f"starting {n_prompts} concurrent completion requests...")
|
||||
@ -565,7 +588,7 @@ async def oai_chat_completions(user_prompt,
|
||||
return completion_response
|
||||
|
||||
|
||||
async def request_embedding(content, base_url):
|
||||
async def request_embedding(content, base_url=None):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/embedding',
|
||||
json={
|
||||
@ -576,6 +599,46 @@ async def request_embedding(content, base_url):
|
||||
return response_json['embedding']
|
||||
|
||||
|
||||
async def request_oai_embeddings(input,
|
||||
base_url=None, user_api_key=None,
|
||||
model=None, async_client=False):
|
||||
# openai client always expects an api_key
|
||||
user_api_key = user_api_key if user_api_key is not None else 'nope'
|
||||
if async_client:
|
||||
origin = 'llama.cpp'
|
||||
if user_api_key is not None:
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/v1/embeddings',
|
||||
json={
|
||||
"input": input,
|
||||
"model": model,
|
||||
},
|
||||
headers=headers) as response:
|
||||
assert response.status == 200, f"received status code not expected: {response.status}"
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
|
||||
response_json = await response.json()
|
||||
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
|
||||
assert response_json['object'] == 'list'
|
||||
return response_json['data']
|
||||
else:
|
||||
openai.api_key = user_api_key
|
||||
openai.api_base = f'{base_url}/v1'
|
||||
oai_embeddings = openai.Embedding.create(
|
||||
model=model,
|
||||
input=input,
|
||||
)
|
||||
|
||||
if isinstance(input, collections.abc.Sequence):
|
||||
embeddings = []
|
||||
for an_oai_embeddings in oai_embeddings.data:
|
||||
embeddings.append(an_oai_embeddings.embedding)
|
||||
else:
|
||||
embeddings = oai_embeddings.data.embedding
|
||||
return embeddings
|
||||
|
||||
|
||||
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
|
||||
content = completion_response['content']
|
||||
n_predicted = completion_response['timings']['predicted_n']
|
||||
|
Loading…
Reference in New Issue
Block a user