Add test for MPT tokenization (#3728)

* Add test for MPT tokenization

* Revert code motion

* Remove unnecessary restriction in test case

* Clarify logic in conversion
This commit is contained in:
goerch 2023-10-22 21:21:42 +02:00 committed by GitHub
parent 5a42a5f8e8
commit 9e70cc0322
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 21 additions and 12 deletions

View File

@ -128,15 +128,22 @@ vocab_size = hparams["vocab_size"]
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model) tokenizer = AutoTokenizer.from_pretrained(dir_model)
added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size): for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") if i not in reverse_vocab:
scores.append(0.0) # dummy tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.NORMAL) toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
# NOTE: wouldn't we like to distinguish CONTROL tokens here?
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens) gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes) gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens)) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))

View File

@ -975,14 +975,15 @@ static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor; (void) tensor;
} }
static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0); std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
if (n_tokens < 0) { if (n_tokens < 0) {
result.resize(-n_tokens); result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens); GGML_ASSERT(check == -n_tokens);
} else { }
else {
result.resize(n_tokens); result.resize(n_tokens);
} }
@ -1202,10 +1203,10 @@ struct llama_vocab {
id special_eot_id = 32010; id special_eot_id = 32010;
int find_bpe_rank(std::string token_left, std::string token_right) const { int find_bpe_rank(std::string token_left, std::string token_right) const {
replace_all(token_left, " ", "\u0120"); GGML_ASSERT(token_left.find(" ") == std::string::npos);
replace_all(token_left, "\n", "\u010A"); GGML_ASSERT(token_left.find("\n") == std::string::npos);
replace_all(token_right, " ", "\u0120"); GGML_ASSERT(token_right.find(" ") == std::string::npos);
replace_all(token_right, "\n", "\u010A"); GGML_ASSERT(token_right.find("\n") == std::string::npos);
auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
if (it == bpe_ranks.end()) { if (it == bpe_ranks.end()) {
@ -7499,7 +7500,7 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
for (size_t i = 0; i < candidates->size; ++i) { for (size_t i = 0; i < candidates->size; ++i) {
const llama_token id = candidates->data[i].id; const llama_token id = candidates->data[i].id;
const std::string piece = llama_token_to_str(ctx, id); const std::string piece = llama_token_to_piece(ctx, id);
if (id == eos) { if (id == eos) {
if (!allow_eos) { if (!allow_eos) {
candidates->data[i].logit = -INFINITY; candidates->data[i].logit = -INFINITY;
@ -7711,7 +7712,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
GGML_ASSERT(false); GGML_ASSERT(false);
} }
const std::string piece = llama_token_to_str(ctx, token); const std::string piece = llama_token_to_piece(ctx, token);
// Note terminating 0 in decoded string // Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8); const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);

BIN
models/ggml-vocab-mpt.gguf Normal file

Binary file not shown.

View File

@ -31,6 +31,7 @@ llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE
llama_build_executable(test-tokenizer-1-bpe.cpp) llama_build_executable(test-tokenizer-1-bpe.cpp)
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_test_executable(test-tokenizer-1-mpt test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp) llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp) llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW llama_build_and_test_executable(test-grad0.cpp) # SLOW