mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
server: continuous performance monitoring and PR comment (#6283)
* server: bench: init * server: bench: reduce list of GPU nodes * server: bench: fix graph, fix output artifact * ci: bench: add mermaid in case of image cannot be uploaded * ci: bench: more resilient, more metrics * ci: bench: trigger build * ci: bench: fix duration * ci: bench: fix typo * ci: bench: fix mermaid values, markdown generated * typo on the step name Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * ci: bench: trailing spaces * ci: bench: move images in a details section * ci: bench: reduce bullet point size --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit is contained in:
parent
53c7ec53d5
commit
a016026a3a
279
.github/workflows/bench.yml
vendored
Normal file
279
.github/workflows/bench.yml
vendored
Normal file
@ -0,0 +1,279 @@
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
gpu-series:
|
||||
description: 'Azure GPU series to run with'
|
||||
required: true
|
||||
type: choice
|
||||
options:
|
||||
- Standard_NC4as_T4_v3
|
||||
- Standard_NC24ads_A100_v4
|
||||
- Standard_NC80adis_H100_v5
|
||||
sha:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
duration:
|
||||
description: 'Duration of the bench'
|
||||
type: string
|
||||
default: 10m
|
||||
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
bench-server-baseline:
|
||||
runs-on: Standard_NC4as_T4_v3
|
||||
env:
|
||||
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
|
||||
N_USERS: 8
|
||||
DURATION: 10m
|
||||
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.event.push.ref == 'refs/heads/master' }}
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Install python env
|
||||
id: pipenv
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Prometheus
|
||||
id: install_prometheus
|
||||
run: |
|
||||
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
|
||||
tar xzf prometheus*.tar.gz --strip-components=1
|
||||
./prometheus --config.file=examples/server/bench/prometheus.yml &
|
||||
while ! nc -z localhost 9090; do
|
||||
sleep 0.1
|
||||
done
|
||||
|
||||
- name: Install k6
|
||||
id: k6_installation
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
wget --quiet https://github.com/grafana/k6/releases/download/v0.49.0/k6-v0.49.0-linux-amd64.tar.gz
|
||||
tar xzf k6*.tar.gz --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
set -eux
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
-DCMAKE_CUDA_ARCHITECTURES=75 \
|
||||
-DLLAMA_FATAL_WARNINGS=OFF \
|
||||
-DLLAMA_ALL_WARNINGS=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release;
|
||||
cmake --build . --config Release -j $(nproc) --target server
|
||||
|
||||
- name: Download the dataset
|
||||
id: download_dataset
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- name: Server bench
|
||||
id: server_bench
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
source venv/bin/activate
|
||||
BENCH_K6_BIN_PATH=./k6 python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
--name ${{ github.job }} \
|
||||
--branch ${{ github.head_ref || github.ref_name }} \
|
||||
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
|
||||
--scenario script.js \
|
||||
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
||||
--hf-repo ggml-org/models \
|
||||
--hf-file phi-2/ggml-model-q4_0.gguf \
|
||||
--model-path-prefix /models \
|
||||
--parallel ${{ env.N_USERS }} \
|
||||
-ngl 33 \
|
||||
--batch-size 2048 \
|
||||
--ubatch-size 256 \
|
||||
--ctx-size 16384 \
|
||||
--n-prompts 1000 \
|
||||
--max-prompt-tokens 1024 \
|
||||
--max-tokens 2048
|
||||
|
||||
cat results.github.env >> $GITHUB_ENV
|
||||
|
||||
# Remove dataset as we do not want it in the artefact
|
||||
rm ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: benchmark-results
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
examples/server/bench/*.json
|
||||
examples/server/bench/*.log
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
with:
|
||||
authToken: ${{secrets.GITHUB_TOKEN}}
|
||||
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
|
||||
context: bench-server-baseline
|
||||
description: |
|
||||
${{ env.BENCH_RESULTS }}
|
||||
state: 'success'
|
||||
|
||||
- name: Upload benchmark images
|
||||
uses: devicons/public-upload-to-imgur@v2.2.2
|
||||
continue-on-error: true # Important as it looks unstable: 503
|
||||
id: imgur_step
|
||||
with:
|
||||
client_id: ${{secrets.IMGUR_CLIENT_ID}}
|
||||
path: |
|
||||
examples/server/bench/prompt_tokens_seconds.jpg
|
||||
examples/server/bench/predicted_tokens_seconds.jpg
|
||||
examples/server/bench/kv_cache_usage_ratio.jpg
|
||||
examples/server/bench/requests_processing.jpg
|
||||
|
||||
- name: Extract mermaid
|
||||
id: set_mermaid
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
|
||||
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
|
||||
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
|
||||
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
|
||||
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
|
||||
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
|
||||
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
- name: Extract image url
|
||||
id: extract_image_url
|
||||
continue-on-error: true
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
|
||||
|
||||
- name: Comment PR
|
||||
uses: mshick/add-pr-comment@v2
|
||||
id: comment_pr
|
||||
if: ${{ github.event.pull_request != '' }}
|
||||
with:
|
||||
message-id: bench-${{ github.job }}-${{ env.RUNNER_LABEL }}
|
||||
message: |
|
||||
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
|
||||
|
||||
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
|
||||
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(90)=${{ env.HTTP_REQ_DURATION_P_90_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
|
||||
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_TOKENS_AVG }}tk/s p(90)=${{ env.LLAMACPP_PROMPT_TOKENS_P_90_ }}tk/s **total=${{ env.LLAMACPP_PROMPT_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
|
||||
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(90)=${{ env.LLAMACPP_TOKENS_SECOND_P_90_ }}tk/s **total=${{ env.LLAMACPP_COMPLETION_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
|
||||
- ${{ env.BENCH_GRAPH_XLABEL }}
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Time series</summary>
|
||||
|
||||
<p align="center">
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
|
||||
|
||||
<details>
|
||||
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.PROMPT_TOKENS_SECONDS }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.PREDICTED_TOKENS_SECONDS }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
</p>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Details</summary>
|
||||
|
||||
<p align="center">
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.KV_CACHE_USAGE_RATIO }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.REQUESTS_PROCESSING }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
</p>
|
||||
</details>
|
||||
</details>
|
303
examples/server/bench/bench.py
Normal file
303
examples/server/bench/bench.py
Normal file
@ -0,0 +1,303 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from contextlib import closing
|
||||
from datetime import datetime
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.dates
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
|
||||
|
||||
def main(args_in: list[str] | None = None) -> None:
|
||||
parser = argparse.ArgumentParser(description="Start server benchmark scenario")
|
||||
parser.add_argument("--name", type=str, help="Bench name", required=True)
|
||||
parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
|
||||
parser.add_argument("--branch", type=str, help="Branch name", default="detached")
|
||||
parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
|
||||
parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
|
||||
parser.add_argument("--port", type=int, help="Server listen host", default="8080")
|
||||
parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
|
||||
parser.add_argument("--n-prompts", type=int,
|
||||
help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
|
||||
parser.add_argument("--max-prompt-tokens", type=int,
|
||||
help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
|
||||
required=True)
|
||||
parser.add_argument("--max-tokens", type=int,
|
||||
help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
|
||||
required=True)
|
||||
parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
|
||||
parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
|
||||
parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
|
||||
parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
|
||||
parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
|
||||
parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
|
||||
parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
|
||||
parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
|
||||
parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Start the server and performance scenario
|
||||
try:
|
||||
server_process = start_server(args)
|
||||
except Exception:
|
||||
print("bench: server start error :")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
sys.exit(1)
|
||||
|
||||
# start the benchmark
|
||||
try:
|
||||
start_benchmark(args)
|
||||
|
||||
iterations = 0
|
||||
with open("results.github.env", 'w') as github_env:
|
||||
# parse output
|
||||
with open('k6-results.json', 'r') as bench_results:
|
||||
# Load JSON data from file
|
||||
data = json.load(bench_results)
|
||||
for metric_name in data['metrics']:
|
||||
for metric_metric in data['metrics'][metric_name]:
|
||||
value = data['metrics'][metric_name][metric_metric]
|
||||
if isinstance(value, float) or isinstance(value, int):
|
||||
value = round(value, 2)
|
||||
data['metrics'][metric_name][metric_metric]=value
|
||||
github_env.write(
|
||||
f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
|
||||
token_seconds = data['metrics']['llamacpp_tokens_second']['avg']
|
||||
iterations = data['root_group']['checks']['success completion']['passes']
|
||||
|
||||
except Exception:
|
||||
print("bench: error :")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
# Stop the server
|
||||
if server_process:
|
||||
try:
|
||||
print(f"bench: shutting down server pid={server_process.pid} ...")
|
||||
if os.name == 'nt':
|
||||
interrupt = signal.CTRL_C_EVENT
|
||||
else:
|
||||
interrupt = signal.SIGINT
|
||||
server_process.send_signal(interrupt)
|
||||
server_process.wait(0.5)
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
|
||||
server_process.kill() # SIGKILL
|
||||
server_process.wait()
|
||||
|
||||
while is_server_listening(args.host, args.port):
|
||||
time.sleep(0.1)
|
||||
|
||||
title = (f"llama.cpp {args.name} on {args.runner_label}\n "
|
||||
f"duration={args.duration} {iterations} iterations")
|
||||
xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
|
||||
f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
|
||||
f"branch={args.branch} commit={args.commit}")
|
||||
|
||||
# Prometheus
|
||||
end_time = time.time()
|
||||
if is_server_listening("0.0.0.0", 9090):
|
||||
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
|
||||
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
|
||||
|
||||
for metric in metrics:
|
||||
resp = requests.get(f"http://localhost:9090/api/v1/query_range",
|
||||
params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
|
||||
|
||||
with open(f"{metric}.json", 'w') as metric_json:
|
||||
metric_json.write(resp.text)
|
||||
|
||||
if resp.status_code != 200:
|
||||
print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
|
||||
else:
|
||||
metric_data = resp.json()
|
||||
values = metric_data['data']['result'][0]['values']
|
||||
timestamps, metric_values = zip(*values)
|
||||
metric_values = [float(value) for value in metric_values]
|
||||
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
|
||||
plt.figure(figsize=(16, 10), dpi=80)
|
||||
plt.plot(timestamps_dt, metric_values, label=metric)
|
||||
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
|
||||
plt.yticks(fontsize=12, alpha=.7)
|
||||
|
||||
ylabel = f"llamacpp:{metric}"
|
||||
plt.title(title,
|
||||
fontsize=14, wrap=True)
|
||||
plt.grid(axis='both', alpha=.3)
|
||||
plt.ylabel(ylabel, fontsize=22)
|
||||
plt.xlabel(xlabel, fontsize=14, wrap=True)
|
||||
plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
|
||||
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
|
||||
plt.gcf().autofmt_xdate()
|
||||
|
||||
# Remove borders
|
||||
plt.gca().spines["top"].set_alpha(0.0)
|
||||
plt.gca().spines["bottom"].set_alpha(0.3)
|
||||
plt.gca().spines["right"].set_alpha(0.0)
|
||||
plt.gca().spines["left"].set_alpha(0.3)
|
||||
|
||||
# Save the plot as a jpg image
|
||||
plt.savefig(f'{metric}.jpg', dpi=60)
|
||||
plt.close()
|
||||
|
||||
# Mermaid format in case images upload failed
|
||||
with (open(f"{metric}.mermaid", 'w') as mermaid_f):
|
||||
mermaid = (
|
||||
f"""---
|
||||
config:
|
||||
xyChart:
|
||||
titleFontSize: 12
|
||||
width: 900
|
||||
height: 600
|
||||
themeVariables:
|
||||
xyChart:
|
||||
titleColor: "#000000"
|
||||
---
|
||||
xychart-beta
|
||||
title "{title}"
|
||||
y-axis "llamacpp:{metric}"
|
||||
x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
|
||||
line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
|
||||
""")
|
||||
mermaid_f.write(mermaid)
|
||||
|
||||
# 140 chars max for commit status description
|
||||
bench_results = {
|
||||
"req": {
|
||||
"p90": data['metrics']["http_req_duration"]["p(90)"],
|
||||
"avg": data['metrics']["http_req_duration"]["avg"],
|
||||
},
|
||||
"pp": {
|
||||
"p90": data['metrics']["llamacpp_prompt_tokens"]["p(90)"],
|
||||
"avg": data['metrics']["llamacpp_prompt_tokens"]["avg"],
|
||||
},
|
||||
"tg": {
|
||||
"p90": data['metrics']["llamacpp_tokens_second"]["p(90)"],
|
||||
"avg": data['metrics']["llamacpp_tokens_second"]["avg"],
|
||||
},
|
||||
}
|
||||
with open("results.github.env", 'a') as github_env:
|
||||
github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
|
||||
github_env.write(f"BENCH_ITERATIONS={iterations}\n")
|
||||
|
||||
title = title.replace('\n', ' ')
|
||||
xlabel = xlabel.replace('\n', ' ')
|
||||
github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
|
||||
github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
|
||||
|
||||
|
||||
def start_benchmark(args):
|
||||
k6_path = 'k6'
|
||||
if 'BENCH_K6_BIN_PATH' in os.environ:
|
||||
k6_path = os.environ['BENCH_K6_BIN_PATH']
|
||||
k6_args = [
|
||||
'run', args.scenario,
|
||||
'--no-color',
|
||||
]
|
||||
k6_args.extend(['--duration', args.duration])
|
||||
k6_args.extend(['--iterations', args.n_prompts])
|
||||
k6_args.extend(['--vus', args.parallel])
|
||||
k6_args.extend(['--summary-export', 'k6-results.json'])
|
||||
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
|
||||
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
|
||||
print(f"bench: starting k6 with: {args}")
|
||||
k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
|
||||
if k6_completed.returncode != 0:
|
||||
raise Exception("bench: unable to run k6")
|
||||
|
||||
|
||||
def start_server(args):
|
||||
server_process = start_server_background(args)
|
||||
|
||||
attempts = 0
|
||||
max_attempts = 20
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
max_attempts *= 2
|
||||
|
||||
while not is_server_listening(args.host, args.port):
|
||||
attempts += 1
|
||||
if attempts > max_attempts:
|
||||
assert False, "server not started"
|
||||
print(f"bench: waiting for server to start ...")
|
||||
time.sleep(0.5)
|
||||
|
||||
print("bench: server started.")
|
||||
return server_process
|
||||
|
||||
|
||||
def start_server_background(args):
|
||||
# Start the server
|
||||
server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_args = [
|
||||
'--host', args.host,
|
||||
'--port', args.port,
|
||||
]
|
||||
model_file = args.model_path_prefix + os.path.sep + args.hf_file
|
||||
model_dir = os.path.dirname(model_file)
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
server_args.extend(['--model', model_file])
|
||||
server_args.extend(['--hf-repo', args.hf_repo])
|
||||
server_args.extend(['--hf-file', args.hf_file])
|
||||
server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
|
||||
server_args.extend(['--ctx-size', args.ctx_size])
|
||||
server_args.extend(['--parallel', args.parallel])
|
||||
server_args.extend(['--batch-size', args.batch_size])
|
||||
server_args.extend(['--ubatch-size', args.ubatch_size])
|
||||
server_args.extend(['--n-predict', args.max_tokens * 2])
|
||||
server_args.extend(['--defrag-thold', "0.1"])
|
||||
server_args.append('--cont-batching')
|
||||
server_args.append('--metrics')
|
||||
server_args.extend(['--log-format', "text"])
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
pkwargs = {
|
||||
'stdout': subprocess.PIPE,
|
||||
'stderr': subprocess.PIPE
|
||||
}
|
||||
server_process = subprocess.Popen(
|
||||
args,
|
||||
**pkwargs)
|
||||
|
||||
def server_log(in_stream, out_stream):
|
||||
for line in iter(in_stream.readline, b''):
|
||||
print(line.decode('utf-8'), end='', file=out_stream)
|
||||
|
||||
thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
|
||||
thread_stdout.start()
|
||||
thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
|
||||
thread_stderr.start()
|
||||
|
||||
return server_process
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
_is_server_listening = result == 0
|
||||
if _is_server_listening:
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...")
|
||||
return _is_server_listening
|
||||
|
||||
|
||||
def escape_metric_name(metric_name):
|
||||
return re.sub('[^A-Z0-9]', '_', metric_name.upper())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
9
examples/server/bench/prometheus.yml
Normal file
9
examples/server/bench/prometheus.yml
Normal file
@ -0,0 +1,9 @@
|
||||
global:
|
||||
scrape_interval: 10s
|
||||
external_labels:
|
||||
llamacpp: 'server'
|
||||
|
||||
scrape_configs:
|
||||
- job_name: 'llama.cpp server'
|
||||
static_configs:
|
||||
- targets: ['localhost:8080']
|
2
examples/server/bench/requirements.txt
Normal file
2
examples/server/bench/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
matplotlib
|
||||
requests
|
@ -1114,7 +1114,10 @@ def start_server_background(context):
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path} {server_args}")
|
||||
|
||||
args = [str(arg) for arg in [context.server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
|
||||
flags = 0
|
||||
if 'nt' == os.name:
|
||||
flags |= subprocess.DETACHED_PROCESS
|
||||
@ -1130,16 +1133,14 @@ def start_server_background(context):
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
**pkwargs)
|
||||
|
||||
def log_stdout(process):
|
||||
for line in iter(process.stdout.readline, b''):
|
||||
print(line.decode('utf-8'), end='')
|
||||
thread_stdout = threading.Thread(target=log_stdout, args=(context.server_process,))
|
||||
def server_log(in_stream, out_stream):
|
||||
for line in iter(in_stream.readline, b''):
|
||||
print(line.decode('utf-8'), end='', file=out_stream)
|
||||
|
||||
thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
|
||||
thread_stdout.start()
|
||||
|
||||
def log_stderr(process):
|
||||
for line in iter(process.stderr.readline, b''):
|
||||
print(line.decode('utf-8'), end='', file=sys.stderr)
|
||||
thread_stderr = threading.Thread(target=log_stderr, args=(context.server_process,))
|
||||
thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
|
||||
thread_stderr.start()
|
||||
|
||||
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
|
||||
|
Loading…
Reference in New Issue
Block a user