mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
ggml : add graph tensor allocator (#2411)
* ggml : add graph tensor allocator * ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset * ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
This commit is contained in:
parent
11f3ca06b8
commit
a113689571
@ -503,6 +503,8 @@ endif()
|
|||||||
add_library(ggml OBJECT
|
add_library(ggml OBJECT
|
||||||
ggml.c
|
ggml.c
|
||||||
ggml.h
|
ggml.h
|
||||||
|
ggml-alloc.c
|
||||||
|
ggml-alloc.h
|
||||||
${GGML_SOURCES_CUDA}
|
${GGML_SOURCES_CUDA}
|
||||||
${GGML_SOURCES_OPENCL}
|
${GGML_SOURCES_OPENCL}
|
||||||
${GGML_SOURCES_METAL}
|
${GGML_SOURCES_METAL}
|
||||||
|
7
Makefile
7
Makefile
@ -329,7 +329,12 @@ $(info )
|
|||||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||||
$(CC) $(CFLAGS) -c $< -o $@
|
$(CC) $(CFLAGS) -c $< -o $@
|
||||||
|
|
||||||
llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
|
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||||
|
$(CC) $(CFLAGS) -c $< -o $@
|
||||||
|
|
||||||
|
OBJS += ggml-alloc.o
|
||||||
|
|
||||||
|
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
common.o: examples/common.cpp examples/common.h
|
common.o: examples/common.cpp examples/common.h
|
||||||
|
541
ggml-alloc.c
Normal file
541
ggml-alloc.c
Normal file
@ -0,0 +1,541 @@
|
|||||||
|
#include "ggml-alloc.h"
|
||||||
|
#include "ggml.h"
|
||||||
|
#include <assert.h>
|
||||||
|
#include <stdarg.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#define UNUSED(x) (void)(x)
|
||||||
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
|
||||||
|
//#define GGML_ALLOCATOR_DEBUG
|
||||||
|
|
||||||
|
//#define AT_PRINTF printf
|
||||||
|
#define AT_PRINTF(...) ((void)0)
|
||||||
|
|
||||||
|
struct hash_node {
|
||||||
|
struct ggml_tensor * t;
|
||||||
|
int n_children;
|
||||||
|
int n_views;
|
||||||
|
};
|
||||||
|
|
||||||
|
static size_t hash(void * p) {
|
||||||
|
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
||||||
|
size_t h = hash(t);
|
||||||
|
|
||||||
|
// linear probing
|
||||||
|
size_t i = h;
|
||||||
|
while (hash_table[i].t != NULL) {
|
||||||
|
if (hash_table[i].t == t) {
|
||||||
|
return &hash_table[i];
|
||||||
|
}
|
||||||
|
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
||||||
|
if (i == h) {
|
||||||
|
// hash table is full
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
hash_table[i].t = t;
|
||||||
|
return &hash_table[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: GGML_PAD ?
|
||||||
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||||
|
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||||
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||||
|
return offset + align;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct free_block {
|
||||||
|
void * addr;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
#define MAX_FREE_BLOCKS 128
|
||||||
|
|
||||||
|
struct ggml_allocr {
|
||||||
|
void * data;
|
||||||
|
size_t size;
|
||||||
|
size_t alignment;
|
||||||
|
int n_free_blocks;
|
||||||
|
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||||
|
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||||
|
size_t max_size;
|
||||||
|
bool measure;
|
||||||
|
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
struct ggml_tensor * allocated_tensors[1024];
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
|
||||||
|
for (int i = 0; i < 1024; i++) {
|
||||||
|
if (alloc->allocated_tensors[i] == NULL) {
|
||||||
|
alloc->allocated_tensors[i] = tensor;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
GGML_ASSERT(!"out of allocated_tensors");
|
||||||
|
}
|
||||||
|
static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
|
||||||
|
for (int i = 0; i < 1024; i++) {
|
||||||
|
if (alloc->allocated_tensors[i] == tensor ||
|
||||||
|
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
||||||
|
alloc->allocated_tensors[i] = NULL;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf("tried to free tensor %s not found\n", tensor->name);
|
||||||
|
GGML_ASSERT(!"tensor not found");
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||||
|
return ggml_nbytes(tensor);
|
||||||
|
|
||||||
|
UNUSED(alloc);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||||
|
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||||
|
size = aligned_offset(NULL, size, alloc->alignment);
|
||||||
|
|
||||||
|
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||||
|
|
||||||
|
size_t max_avail = 0;
|
||||||
|
|
||||||
|
// find the best fitting free block
|
||||||
|
int best_fit_block = -1;
|
||||||
|
size_t best_fit_size = SIZE_MAX;
|
||||||
|
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||||
|
struct free_block * block = &alloc->free_blocks[i];
|
||||||
|
max_avail = MAX(max_avail, block->size);
|
||||||
|
if (block->size >= size && block->size <= best_fit_size) {
|
||||||
|
best_fit_block = i;
|
||||||
|
best_fit_size = block->size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
AT_PRINTF("block %d\n", best_fit_block);
|
||||||
|
|
||||||
|
if (best_fit_block == -1) {
|
||||||
|
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||||
|
__func__, size, max_avail);
|
||||||
|
GGML_ASSERT(!"not enough space in the buffer");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||||
|
void * addr = block->addr;
|
||||||
|
block->addr = (char*)block->addr + size;
|
||||||
|
block->size -= size;
|
||||||
|
if (block->size == 0) {
|
||||||
|
// remove block if empty
|
||||||
|
alloc->n_free_blocks--;
|
||||||
|
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
||||||
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
tensor->data = addr;
|
||||||
|
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
add_allocated_tensor(alloc, tensor);
|
||||||
|
size_t cur_max = (char*)addr - (char*)alloc->data + size;
|
||||||
|
if (cur_max > alloc->max_size) {
|
||||||
|
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||||
|
for (int i = 0; i < 1024; i++) {
|
||||||
|
if (alloc->allocated_tensors[i]) {
|
||||||
|
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
||||||
|
}
|
||||||
|
|
||||||
|
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||||
|
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||||
|
void * ptr = tensor->data;
|
||||||
|
|
||||||
|
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
|
||||||
|
// the tensor was not allocated in this buffer
|
||||||
|
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||||
|
// the easiest way to deal with this is just to ignore it
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||||
|
size = aligned_offset(NULL, size, alloc->alignment);
|
||||||
|
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||||
|
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
remove_allocated_tensor(alloc, tensor);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// see if we can merge with an existing block
|
||||||
|
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||||
|
struct free_block * block = &alloc->free_blocks[i];
|
||||||
|
// check if ptr is at the end of the block
|
||||||
|
if ((char*)block->addr + block->size == ptr) {
|
||||||
|
block->size += size;
|
||||||
|
// check if we can merge with the next block
|
||||||
|
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
||||||
|
block->size += alloc->free_blocks[i+1].size;
|
||||||
|
alloc->n_free_blocks--;
|
||||||
|
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
||||||
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// check if ptr is at the beginning of the block
|
||||||
|
if ((char*)ptr + size == block->addr) {
|
||||||
|
block->addr = ptr;
|
||||||
|
block->size += size;
|
||||||
|
// check if we can merge with the previous block
|
||||||
|
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
||||||
|
alloc->free_blocks[i-1].size += block->size;
|
||||||
|
alloc->n_free_blocks--;
|
||||||
|
for (int j = i; j < alloc->n_free_blocks; j++) {
|
||||||
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// otherwise, add a new block
|
||||||
|
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||||
|
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||||
|
int insert_pos = 0;
|
||||||
|
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
||||||
|
insert_pos++;
|
||||||
|
}
|
||||||
|
// shift all blocks from insert_pos onward to make room for the new block
|
||||||
|
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
||||||
|
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
||||||
|
}
|
||||||
|
// insert the new block
|
||||||
|
alloc->free_blocks[insert_pos].addr = ptr;
|
||||||
|
alloc->free_blocks[insert_pos].size = size;
|
||||||
|
alloc->n_free_blocks++;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||||
|
alloc->n_free_blocks = 1;
|
||||||
|
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||||
|
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||||
|
alloc->free_blocks[0].size = alloc->size - align_offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||||
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||||
|
|
||||||
|
*alloc = (struct ggml_allocr){
|
||||||
|
/*.data = */ data,
|
||||||
|
/*.size = */ size,
|
||||||
|
/*.alignment = */ alignment,
|
||||||
|
/*.n_free_blocks = */ 0,
|
||||||
|
/*.free_blocks = */ {{0}},
|
||||||
|
/*.hash_table = */ {{0}},
|
||||||
|
/*.max_size = */ 0,
|
||||||
|
/*.measure = */ false,
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
/*.allocated_tensors = */ = {0},
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
ggml_allocr_reset(alloc);
|
||||||
|
|
||||||
|
return alloc;
|
||||||
|
}
|
||||||
|
|
||||||
|
// address and size of the buffer when measuring
|
||||||
|
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||||
|
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
|
||||||
|
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||||
|
|
||||||
|
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||||
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||||
|
|
||||||
|
*alloc = (struct ggml_allocr){
|
||||||
|
/*.data = */ MEASURE_BASE_ADDR,
|
||||||
|
/*.size = */ MEASURE_MAX_SIZE,
|
||||||
|
/*.alignment = */ alignment,
|
||||||
|
/*.n_free_blocks = */ 0,
|
||||||
|
/*.free_blocks = */ {{0}},
|
||||||
|
/*.hash_table = */ {{0}},
|
||||||
|
/*.max_size = */ 0,
|
||||||
|
/*.measure = */ true,
|
||||||
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
/*.allocated_tensors = */ = {0},
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
|
||||||
|
ggml_allocr_reset(alloc);
|
||||||
|
|
||||||
|
return alloc;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||||
|
free(alloc);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||||
|
return alloc->measure;
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////// compute graph allocator
|
||||||
|
|
||||||
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||||
|
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||||
|
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||||
|
if (a->type != b->type) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||||
|
if (a->ne[i] != b->ne[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (a->nb[i] != b->nb[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||||
|
switch (t->op) {
|
||||||
|
case GGML_OP_PERMUTE:
|
||||||
|
case GGML_OP_RESHAPE:
|
||||||
|
case GGML_OP_TRANSPOSE:
|
||||||
|
case GGML_OP_VIEW:
|
||||||
|
return t->src[0];
|
||||||
|
case GGML_OP_CPY:
|
||||||
|
return t->src[1];
|
||||||
|
default:
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||||
|
struct ggml_tensor * parent = t;
|
||||||
|
do {
|
||||||
|
parent = get_view_parent(parent);
|
||||||
|
} while (ggml_is_view(parent));
|
||||||
|
return parent;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||||
|
switch (op) {
|
||||||
|
case GGML_OP_SCALE:
|
||||||
|
case GGML_OP_DIAG_MASK_ZERO:
|
||||||
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
|
case GGML_OP_ADD:
|
||||||
|
case GGML_OP_ADD1:
|
||||||
|
case GGML_OP_ACC:
|
||||||
|
case GGML_OP_SUB:
|
||||||
|
case GGML_OP_MUL:
|
||||||
|
case GGML_OP_DIV:
|
||||||
|
case GGML_OP_SQR:
|
||||||
|
case GGML_OP_SQRT:
|
||||||
|
case GGML_OP_LOG:
|
||||||
|
case GGML_OP_UNARY:
|
||||||
|
case GGML_OP_ROPE:
|
||||||
|
case GGML_OP_RMS_NORM:
|
||||||
|
case GGML_OP_SET:
|
||||||
|
case GGML_OP_SOFT_MAX:
|
||||||
|
case GGML_OP_CONT:
|
||||||
|
return true;
|
||||||
|
|
||||||
|
default:
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||||
|
struct hash_node * ht = alloc->hash_table;
|
||||||
|
if (node->data == NULL) {
|
||||||
|
if (ggml_is_view(node)) {
|
||||||
|
size_t offset;
|
||||||
|
switch(node->op) {
|
||||||
|
case GGML_OP_VIEW:
|
||||||
|
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||||
|
node->data = (char *) node->src[0]->data + offset;
|
||||||
|
break;
|
||||||
|
case GGML_OP_PERMUTE:
|
||||||
|
case GGML_OP_RESHAPE:
|
||||||
|
case GGML_OP_TRANSPOSE:
|
||||||
|
node->data = node->src[0]->data;
|
||||||
|
break;
|
||||||
|
case GGML_OP_CPY:
|
||||||
|
node->data = node->src[1]->data;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(!"unknown view op");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// see if we can reuse a parent's buffer (inplace)
|
||||||
|
if (ggml_op_can_inplace(node->op)) {
|
||||||
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||||
|
struct ggml_tensor * parent = node->src[i];
|
||||||
|
if (parent == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
struct hash_node * p_hn = hash_get(ht, parent);
|
||||||
|
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||||
|
if (ggml_is_view(parent)) {
|
||||||
|
struct ggml_tensor * view_src = get_view_source(parent);
|
||||||
|
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||||
|
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||||
|
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||||
|
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||||
|
// we cannot free the tensor because the original address of the allocation is lost.
|
||||||
|
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||||
|
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
||||||
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||||
|
node->data = parent->data;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||||
|
node->data = parent->data;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ggml_allocr_alloc(alloc, node);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||||
|
struct ggml_allocr * alloc,
|
||||||
|
struct ggml_cgraph ** graphs, int n_graphs,
|
||||||
|
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||||
|
|
||||||
|
// reset hash table
|
||||||
|
struct hash_node * ht = alloc->hash_table;
|
||||||
|
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
||||||
|
|
||||||
|
// count number of children and views
|
||||||
|
for (int g = 0; g < n_graphs; g++) {
|
||||||
|
struct ggml_cgraph * gf = graphs[g];
|
||||||
|
for (int i = 0; i < gf->n_nodes; i++) {
|
||||||
|
struct ggml_tensor * node = gf->nodes[i];
|
||||||
|
|
||||||
|
if (ggml_is_view(node)) {
|
||||||
|
struct ggml_tensor * view_src = get_view_source(node);
|
||||||
|
hash_get(ht, view_src)->n_views += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
|
struct ggml_tensor * parent = node->src[j];
|
||||||
|
if (parent == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
hash_get(ht, parent)->n_children += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// allocate tensors
|
||||||
|
for (int g = 0; g < n_graphs; g++) {
|
||||||
|
struct ggml_cgraph * gf = graphs[g];
|
||||||
|
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||||
|
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
||||||
|
if (inputs != NULL && inputs[g] != NULL) {
|
||||||
|
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||||
|
struct ggml_tensor * input = inputs[g][i];
|
||||||
|
AT_PRINTF("input: %s\n", input->name);
|
||||||
|
allocate_node(alloc, input);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (int i = 0; i < gf->n_nodes; i++) {
|
||||||
|
struct ggml_tensor * node = gf->nodes[i];
|
||||||
|
|
||||||
|
// allocate parents (leafs)
|
||||||
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
|
struct ggml_tensor * parent = node->src[j];
|
||||||
|
if (parent == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
allocate_node(alloc, parent);
|
||||||
|
}
|
||||||
|
|
||||||
|
// allocate node
|
||||||
|
allocate_node(alloc, node);
|
||||||
|
|
||||||
|
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||||
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
|
struct ggml_tensor * parent = node->src[j];
|
||||||
|
if (parent == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
AT_PRINTF("%s", parent->name);
|
||||||
|
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||||
|
AT_PRINTF(", ");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
AT_PRINTF("\n");
|
||||||
|
|
||||||
|
// update parents
|
||||||
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
|
struct ggml_tensor * parent = node->src[j];
|
||||||
|
if (parent == NULL) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
struct hash_node * p_hn = hash_get(ht, parent);
|
||||||
|
p_hn->n_children -= 1;
|
||||||
|
|
||||||
|
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||||
|
|
||||||
|
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||||
|
if (ggml_is_view(parent)) {
|
||||||
|
struct ggml_tensor * view_src = get_view_source(parent);
|
||||||
|
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||||
|
view_src_hn->n_views -= 1;
|
||||||
|
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
|
||||||
|
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||||
|
ggml_allocator_free_tensor(alloc, view_src);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (parent->data != node->data) {
|
||||||
|
ggml_allocator_free_tensor(alloc, parent);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
AT_PRINTF("\n");
|
||||||
|
}
|
||||||
|
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||||
|
if (outputs != NULL && outputs[g] != NULL) {
|
||||||
|
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||||
|
struct ggml_tensor * output = outputs[g][i];
|
||||||
|
AT_PRINTF("output: %s\n", output->name);
|
||||||
|
ggml_allocator_free_tensor(alloc, output);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return alloc->max_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||||
|
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||||
|
}
|
22
ggml-alloc.h
Normal file
22
ggml-alloc.h
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||||
|
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||||
|
|
||||||
|
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||||
|
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||||
|
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||||
|
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||||
|
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
55
ggml.c
55
ggml.c
@ -4562,6 +4562,8 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
|||||||
const int64_t * ne,
|
const int64_t * ne,
|
||||||
void * data) {
|
void * data) {
|
||||||
|
|
||||||
|
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
|
||||||
|
|
||||||
size_t data_size = 0;
|
size_t data_size = 0;
|
||||||
|
|
||||||
if (data == NULL && !ctx->no_alloc) {
|
if (data == NULL && !ctx->no_alloc) {
|
||||||
@ -6238,6 +6240,27 @@ struct ggml_tensor * ggml_reshape_4d(
|
|||||||
|
|
||||||
// ggml_view_1d
|
// ggml_view_1d
|
||||||
|
|
||||||
|
static struct ggml_tensor * ggml_view_tensor_offset(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_dims,
|
||||||
|
const int64_t * ne,
|
||||||
|
size_t offset) {
|
||||||
|
// don't calculate an offset from an unallocated tensor
|
||||||
|
void * data = NULL;
|
||||||
|
if (a->data != NULL) {
|
||||||
|
data = (char *) a->data + offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
|
||||||
|
|
||||||
|
ggml_format_name(result, "%s (view)", a->name);
|
||||||
|
|
||||||
|
ggml_set_op_params(result, &offset, sizeof(offset));
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * ggml_view_1d(
|
struct ggml_tensor * ggml_view_1d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -6250,10 +6273,7 @@ struct ggml_tensor * ggml_view_1d(
|
|||||||
is_node = true;
|
is_node = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
|
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
|
||||||
ggml_format_name(result, "%s (view)", a->name);
|
|
||||||
|
|
||||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
|
||||||
|
|
||||||
result->op = GGML_OP_VIEW;
|
result->op = GGML_OP_VIEW;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
@ -6280,10 +6300,7 @@ struct ggml_tensor * ggml_view_2d(
|
|||||||
|
|
||||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
|
||||||
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
|
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
|
||||||
ggml_format_name(result, "%s (view)", a->name);
|
|
||||||
|
|
||||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
|
||||||
|
|
||||||
result->nb[1] = nb1;
|
result->nb[1] = nb1;
|
||||||
result->nb[2] = result->nb[1]*ne1;
|
result->nb[2] = result->nb[1]*ne1;
|
||||||
@ -6316,10 +6333,7 @@ struct ggml_tensor * ggml_view_3d(
|
|||||||
|
|
||||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
|
||||||
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
|
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
|
||||||
ggml_format_name(result, "%s (view)", a->name);
|
|
||||||
|
|
||||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
|
||||||
|
|
||||||
result->nb[1] = nb1;
|
result->nb[1] = nb1;
|
||||||
result->nb[2] = nb2;
|
result->nb[2] = nb2;
|
||||||
@ -6354,10 +6368,7 @@ struct ggml_tensor * ggml_view_4d(
|
|||||||
|
|
||||||
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
|
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
|
||||||
|
|
||||||
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
|
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
|
||||||
ggml_format_name(result, "%s (view)", a->name);
|
|
||||||
|
|
||||||
ggml_set_op_params(result, &offset, sizeof(offset));
|
|
||||||
|
|
||||||
result->nb[1] = nb1;
|
result->nb[1] = nb1;
|
||||||
result->nb[2] = nb2;
|
result->nb[2] = nb2;
|
||||||
@ -6741,6 +6752,18 @@ struct ggml_tensor * ggml_rope_inplace(
|
|||||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_rope_custom(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past,
|
||||||
|
int n_dims,
|
||||||
|
int mode,
|
||||||
|
int n_ctx,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale) {
|
||||||
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * ggml_rope_custom_inplace(
|
struct ggml_tensor * ggml_rope_custom_inplace(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
13
ggml.h
13
ggml.h
@ -1170,7 +1170,18 @@ extern "C" {
|
|||||||
int mode,
|
int mode,
|
||||||
int n_ctx);
|
int n_ctx);
|
||||||
|
|
||||||
// custom RoPE, in-place, returns view(a)
|
// custom RoPE
|
||||||
|
GGML_API struct ggml_tensor * ggml_rope_custom(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past,
|
||||||
|
int n_dims,
|
||||||
|
int mode,
|
||||||
|
int n_ctx,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale);
|
||||||
|
|
||||||
|
// in-place, returns view(a)
|
||||||
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
240
llama.cpp
240
llama.cpp
@ -56,8 +56,14 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
|
||||||
|
#include "ggml-alloc.h"
|
||||||
|
#define LLAMA_USE_ALLOCATOR
|
||||||
|
#else
|
||||||
#define LLAMA_USE_SCRATCH
|
#define LLAMA_USE_SCRATCH
|
||||||
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
// available llama models
|
// available llama models
|
||||||
enum e_model {
|
enum e_model {
|
||||||
@ -327,13 +333,22 @@ struct llama_model {
|
|||||||
|
|
||||||
struct llama_context {
|
struct llama_context {
|
||||||
llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
|
llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
|
||||||
#ifdef GGML_USE_METAL
|
|
||||||
~llama_context() {
|
~llama_context() {
|
||||||
|
if (model_owner) {
|
||||||
|
delete &model;
|
||||||
|
}
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
if (ctx_metal) {
|
if (ctx_metal) {
|
||||||
ggml_metal_free(ctx_metal);
|
ggml_metal_free(ctx_metal);
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
if (alloc) {
|
||||||
|
ggml_allocr_free(alloc);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
std::mt19937 rng;
|
std::mt19937 rng;
|
||||||
|
|
||||||
bool has_evaluated_once = false;
|
bool has_evaluated_once = false;
|
||||||
@ -371,7 +386,17 @@ struct llama_context {
|
|||||||
// memory buffers used to evaluate the model
|
// memory buffers used to evaluate the model
|
||||||
// TODO: move in llama_state
|
// TODO: move in llama_state
|
||||||
llama_ctx_buffer buf_compute;
|
llama_ctx_buffer buf_compute;
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
llama_ctx_buffer buf_alloc;
|
||||||
|
ggml_allocr * alloc = NULL;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_SCRATCH
|
||||||
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
|
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
|
||||||
|
int buf_last = 0;
|
||||||
|
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
ggml_metal_context * ctx_metal = NULL;
|
ggml_metal_context * ctx_metal = NULL;
|
||||||
@ -381,9 +406,6 @@ struct llama_context {
|
|||||||
ggml_mpi_context * ctx_mpi = NULL;
|
ggml_mpi_context * ctx_mpi = NULL;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
int buf_last = 0;
|
|
||||||
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
|
|
||||||
|
|
||||||
void use_buf(struct ggml_context * ctx, int i) {
|
void use_buf(struct ggml_context * ctx, int i) {
|
||||||
#if defined(LLAMA_USE_SCRATCH)
|
#if defined(LLAMA_USE_SCRATCH)
|
||||||
size_t last_size = 0;
|
size_t last_size = 0;
|
||||||
@ -1230,12 +1252,16 @@ static void llama_model_load_internal(
|
|||||||
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
|
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
|
||||||
|
|
||||||
// this is the total memory required to run the inference
|
// this is the total memory required to run the inference
|
||||||
const size_t mem_required =
|
size_t mem_required =
|
||||||
ctx_size +
|
ctx_size +
|
||||||
mmapped_size - vram_weights + // weights in VRAM not in memory
|
mmapped_size - vram_weights; // weights in VRAM not in memory
|
||||||
|
|
||||||
|
#ifndef LLAMA_USE_ALLOCATOR
|
||||||
|
mem_required +=
|
||||||
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
||||||
MEM_REQ_SCRATCH1().at(model.type) +
|
MEM_REQ_SCRATCH1().at(model.type) +
|
||||||
MEM_REQ_EVAL().at(model.type);
|
MEM_REQ_EVAL().at(model.type);
|
||||||
|
#endif
|
||||||
|
|
||||||
// this is the memory required by one llama_state
|
// this is the memory required by one llama_state
|
||||||
const size_t mem_required_state =
|
const size_t mem_required_state =
|
||||||
@ -1360,32 +1386,15 @@ static bool llama_model_load(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// evaluate the transformer
|
static struct ggml_cgraph * llama_build_graph(
|
||||||
//
|
|
||||||
// - lctx: llama context
|
|
||||||
// - tokens: new batch of tokens to process
|
|
||||||
// - embd embeddings input
|
|
||||||
// - n_tokens number of tokens
|
|
||||||
// - n_past: the context size so far
|
|
||||||
// - n_threads: number of threads to use
|
|
||||||
//
|
|
||||||
static bool llama_eval_internal(
|
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
const llama_token * tokens,
|
const llama_token * tokens,
|
||||||
const float * embd,
|
const float * embd,
|
||||||
int n_tokens,
|
int n_tokens,
|
||||||
int n_past,
|
int n_past) {
|
||||||
int n_threads,
|
|
||||||
const char * cgraph_fname) {
|
|
||||||
|
|
||||||
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
|
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
|
||||||
|
|
||||||
#ifdef GGML_USE_MPI
|
|
||||||
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
const int64_t t_start_us = ggml_time_us();
|
|
||||||
|
|
||||||
const int N = n_tokens;
|
const int N = n_tokens;
|
||||||
|
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
@ -1401,10 +1410,8 @@ static bool llama_eval_internal(
|
|||||||
const int64_t n_head = hparams.n_head;
|
const int64_t n_head = hparams.n_head;
|
||||||
const int64_t n_head_kv = hparams.n_head_kv;
|
const int64_t n_head_kv = hparams.n_head_kv;
|
||||||
const int64_t n_embd_head = hparams.n_embd_head();
|
const int64_t n_embd_head = hparams.n_embd_head();
|
||||||
const int64_t n_vocab = hparams.n_vocab;
|
|
||||||
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||||
|
|
||||||
|
|
||||||
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
|
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
const float freq_base = hparams.rope_freq_base;
|
const float freq_base = hparams.rope_freq_base;
|
||||||
@ -1416,26 +1423,35 @@ static bool llama_eval_internal(
|
|||||||
auto & mem_per_token = lctx.mem_per_token;
|
auto & mem_per_token = lctx.mem_per_token;
|
||||||
auto & buf_compute = lctx.buf_compute;
|
auto & buf_compute = lctx.buf_compute;
|
||||||
|
|
||||||
|
|
||||||
struct ggml_init_params params = {
|
struct ggml_init_params params = {
|
||||||
/*.mem_size =*/ buf_compute.size,
|
/*.mem_size =*/ buf_compute.size,
|
||||||
/*.mem_buffer =*/ buf_compute.addr,
|
/*.mem_buffer =*/ buf_compute.addr,
|
||||||
/*.no_alloc =*/ false,
|
/*.no_alloc =*/ false,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
params.no_alloc = true;
|
||||||
|
#endif
|
||||||
|
|
||||||
struct ggml_context * ctx0 = ggml_init(params);
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
|
||||||
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
|
||||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
|
||||||
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
|
||||||
|
|
||||||
struct ggml_tensor * cur;
|
struct ggml_tensor * cur;
|
||||||
struct ggml_tensor * inpL;
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
if (tokens) {
|
if (tokens) {
|
||||||
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inp_tokens);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
|
||||||
|
#endif
|
||||||
ggml_set_name(inp_tokens, "inp_tokens");
|
ggml_set_name(inp_tokens, "inp_tokens");
|
||||||
|
|
||||||
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
|
||||||
@ -1445,8 +1461,16 @@ static bool llama_eval_internal(
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
ggml_allocr_alloc(lctx.alloc, inpL);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||||
}
|
}
|
||||||
|
#else
|
||||||
|
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||||
(void) i_gpu_start;
|
(void) i_gpu_start;
|
||||||
@ -1472,6 +1496,17 @@ static bool llama_eval_internal(
|
|||||||
}
|
}
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
|
#endif
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_format_name(inpL, "layer_inp_%d", il);
|
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||||
|
|
||||||
@ -1567,9 +1602,6 @@ static bool llama_eval_internal(
|
|||||||
ggml_set_name(KQ, "KQ");
|
ggml_set_name(KQ, "KQ");
|
||||||
|
|
||||||
// KQ_scaled = KQ / sqrt(n_embd_head)
|
// KQ_scaled = KQ / sqrt(n_embd_head)
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
|
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
|
||||||
|
|
||||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||||
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
|
||||||
offload_func_kq(KQ_scaled);
|
offload_func_kq(KQ_scaled);
|
||||||
@ -1685,9 +1717,6 @@ static bool llama_eval_internal(
|
|||||||
|
|
||||||
lctx.use_buf(ctx0, 0);
|
lctx.use_buf(ctx0, 0);
|
||||||
|
|
||||||
// used at the end to optionally extract the embeddings
|
|
||||||
struct ggml_tensor * embeddings = NULL;
|
|
||||||
|
|
||||||
// norm
|
// norm
|
||||||
{
|
{
|
||||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||||
@ -1698,8 +1727,6 @@ static bool llama_eval_internal(
|
|||||||
cur = ggml_mul(ctx0, cur, model.norm);
|
cur = ggml_mul(ctx0, cur, model.norm);
|
||||||
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
|
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
|
||||||
ggml_set_name(cur, "result_norm");
|
ggml_set_name(cur, "result_norm");
|
||||||
|
|
||||||
embeddings = cur;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// lm_head
|
// lm_head
|
||||||
@ -1711,12 +1738,82 @@ static bool llama_eval_internal(
|
|||||||
// logits -> probs
|
// logits -> probs
|
||||||
//cur = ggml_soft_max_inplace(ctx0, cur);
|
//cur = ggml_soft_max_inplace(ctx0, cur);
|
||||||
|
|
||||||
// run the computation
|
|
||||||
ggml_build_forward_expand(gf, cur);
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
|
if (mem_per_token == 0) {
|
||||||
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
||||||
|
ggml_used_mem(ctx0)/1024.0/1024.0,
|
||||||
|
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
||||||
|
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
||||||
|
lctx.work_buffer.size()/1024.0/1024.0,
|
||||||
|
n_past, N);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
ggml_free(ctx0);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate the transformer
|
||||||
|
//
|
||||||
|
// - lctx: llama context
|
||||||
|
// - tokens: new batch of tokens to process
|
||||||
|
// - embd embeddings input
|
||||||
|
// - n_tokens number of tokens
|
||||||
|
// - n_past: the context size so far
|
||||||
|
// - n_threads: number of threads to use
|
||||||
|
//
|
||||||
|
static bool llama_eval_internal(
|
||||||
|
llama_context & lctx,
|
||||||
|
const llama_token * tokens,
|
||||||
|
const float * embd,
|
||||||
|
int n_tokens,
|
||||||
|
int n_past,
|
||||||
|
int n_threads,
|
||||||
|
const char * cgraph_fname) {
|
||||||
|
|
||||||
|
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
|
||||||
|
|
||||||
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
#ifdef GGML_USE_MPI
|
||||||
|
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
const int N = n_tokens;
|
||||||
|
|
||||||
|
const auto & model = lctx.model;
|
||||||
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
|
const auto & kv_self = lctx.kv_self;
|
||||||
|
|
||||||
|
LLAMA_ASSERT(!!kv_self.ctx);
|
||||||
|
|
||||||
|
const int64_t n_embd = hparams.n_embd;
|
||||||
|
const int64_t n_vocab = hparams.n_vocab;
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
ggml_allocr_reset(lctx.alloc);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||||
|
|
||||||
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||||
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||||
|
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
|
||||||
|
|
||||||
#if GGML_USE_MPI
|
#if GGML_USE_MPI
|
||||||
|
const int64_t n_layer = hparams.n_layer;
|
||||||
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -1760,6 +1857,10 @@ static bool llama_eval_internal(
|
|||||||
lctx.kv_self.n = n_past + N;
|
lctx.kv_self.n = n_past + N;
|
||||||
|
|
||||||
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
|
||||||
|
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
|
||||||
|
|
||||||
|
LLAMA_ASSERT(strcmp(res->name, "result_output") == 0);
|
||||||
|
LLAMA_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
|
||||||
|
|
||||||
if (cgraph_fname) {
|
if (cgraph_fname) {
|
||||||
ggml_graph_export(gf, cgraph_fname);
|
ggml_graph_export(gf, cgraph_fname);
|
||||||
@ -1798,21 +1899,6 @@ static bool llama_eval_internal(
|
|||||||
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
|
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (mem_per_token == 0) {
|
|
||||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
||||||
}
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
|
||||||
ggml_used_mem(ctx0)/1024.0/1024.0,
|
|
||||||
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
|
||||||
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
|
||||||
lctx.work_buffer.size()/1024.0/1024.0,
|
|
||||||
n_past, N);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_free(ctx0);
|
|
||||||
|
|
||||||
// measure the performance only for the single-token evals
|
// measure the performance only for the single-token evals
|
||||||
if (N == 1) {
|
if (N == 1) {
|
||||||
lctx.t_eval_us += ggml_time_us() - t_start_us;
|
lctx.t_eval_us += ggml_time_us() - t_start_us;
|
||||||
@ -3180,10 +3266,47 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ctx->embedding.resize(hparams.n_embd);
|
ctx->embedding.resize(hparams.n_embd);
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
#ifdef LLAMA_USE_ALLOCATOR
|
||||||
|
{
|
||||||
|
static const size_t tensor_alignment = 32;
|
||||||
|
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
|
||||||
|
ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
|
||||||
|
|
||||||
|
// create measure allocator
|
||||||
|
ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||||
|
|
||||||
|
// build worst-case graph
|
||||||
|
int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
|
||||||
|
int n_past = hparams.n_ctx - n_tokens;
|
||||||
|
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||||||
|
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
|
||||||
|
|
||||||
|
// measure memory requirements for the graph
|
||||||
|
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||||
|
|
||||||
|
// debug - for comparison with scratch buffer
|
||||||
|
//size_t prev_req =
|
||||||
|
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
|
||||||
|
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
|
||||||
|
// MEM_REQ_EVAL().at(ctx->model.type);
|
||||||
|
//fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
|
||||||
|
|
||||||
|
// recreate allocator with exact memory requirements
|
||||||
|
ggml_allocr_free(ctx->alloc);
|
||||||
|
|
||||||
|
ctx->buf_alloc.resize(alloc_size);
|
||||||
|
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef LLAMA_USE_SCRATCH
|
||||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
||||||
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
@ -3253,9 +3376,6 @@ struct llama_context * llama_init_from_file(
|
|||||||
}
|
}
|
||||||
|
|
||||||
void llama_free(struct llama_context * ctx) {
|
void llama_free(struct llama_context * ctx) {
|
||||||
if (ctx->model_owner) {
|
|
||||||
delete &ctx->model;
|
|
||||||
}
|
|
||||||
delete ctx;
|
delete ctx;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user