mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
Fix ffn_down quantization mix for MoE models (#4927)
* Fix ffn_down quantization mix for MoE models In #4872 I did not consider the part where every third tensor is quantized with more bits. Fir MoE this leads to tensors of the same layer being quantized with different number of bits, which is not considered as a possibility in the inference implementation (it is assumed all experts use the same quantization). * Fix the fix * Review suggestion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
5f5fe1bd60
commit
a128c38de8
34
llama.cpp
34
llama.cpp
@ -8480,13 +8480,31 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
} else if (name.find("ffn_down") != std::string::npos) {
|
||||
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||||
int i_layer, n_layer;
|
||||
if (n_expert == 1) {
|
||||
i_layer = qs.i_feed_forward_w2;
|
||||
n_layer = qs.n_feed_forward_w2;
|
||||
} else {
|
||||
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
|
||||
// sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work
|
||||
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
||||
// tensor name.
|
||||
n_layer = qs.n_feed_forward_w2 / n_expert;
|
||||
if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) {
|
||||
throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str()));
|
||||
}
|
||||
if (i_layer < 0 || i_layer >= n_layer) {
|
||||
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer));
|
||||
}
|
||||
}
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||||
if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q4_K;
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
@ -8494,14 +8512,14 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (arch == LLM_ARCH_FALCON) {
|
||||
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) {
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
++qs.i_feed_forward_w2;
|
||||
|
Loading…
Reference in New Issue
Block a user