mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 10:54:36 +00:00
llama : validate special token ids are in range when loading GGUF model (#3635)
* Add validation for special token ids to llama.cpp Small optimization for llama_byte_to_token SPM mode * Fix BPE newline check, only I could break something so simple * Killll meeeeee * Account for GGUF_KEY_KEY only setting when the key exists * Minor code cleanups. * Fix convert.py error msg when added tokens are out of range * Make gguf SpecialVocab vocab size-aware Update conversion scripts accordingly * Avoid a string copy Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
d3956aea53
commit
a5e7dbd614
@ -230,7 +230,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model)
|
special_vocab = gguf.SpecialVocab(dir_model, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -129,7 +129,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -152,7 +152,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -134,7 +134,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -388,7 +388,9 @@ def handle_metadata(cfg, hp):
|
|||||||
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
|
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
|
||||||
cfg.vocabtype )
|
cfg.vocabtype )
|
||||||
# FIXME: Respect cfg.vocab_dir?
|
# FIXME: Respect cfg.vocab_dir?
|
||||||
svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
|
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
|
||||||
|
load_merges = cfg.vocabtype == 'bpe',
|
||||||
|
n_vocab = vocab.vocab_size)
|
||||||
convert.check_vocab_size(params, vocab)
|
convert.check_vocab_size(params, vocab)
|
||||||
return (params, vocab, svocab)
|
return (params, vocab, svocab)
|
||||||
|
|
||||||
|
@ -139,7 +139,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -150,7 +150,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -122,7 +122,7 @@ gguf_writer.add_token_list(tokens)
|
|||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
13
convert.py
13
convert.py
@ -369,7 +369,7 @@ class SentencePieceVocab:
|
|||||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||||
actual_ids = sorted(added_tokens.values())
|
actual_ids = sorted(added_tokens.values())
|
||||||
if expected_ids != actual_ids:
|
if expected_ids != actual_ids:
|
||||||
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
|
raise Exception(f"Expected added token IDs to be sequential and start at {vocab_size}; got {actual_ids}")
|
||||||
|
|
||||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||||
self.added_tokens_list = [text for (text, idx) in items]
|
self.added_tokens_list = [text for (text, idx) in items]
|
||||||
@ -1163,10 +1163,13 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
|
|
||||||
vocab: Vocab
|
vocab: Vocab
|
||||||
if args.vocab_only:
|
if args.vocab_only:
|
||||||
assert args.outfile, "need --outfile if using --vocab-only"
|
if not args.outfile:
|
||||||
|
raise ValueError("need --outfile if using --vocab-only")
|
||||||
# FIXME: Try to respect vocab_dir somehow?
|
# FIXME: Try to respect vocab_dir somehow?
|
||||||
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
|
||||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
|
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||||
|
load_merges = args.vocabtype == 'bpe',
|
||||||
|
n_vocab = vocab.vocab_size)
|
||||||
outfile = args.outfile
|
outfile = args.outfile
|
||||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
|
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
|
||||||
print(f"Wrote {outfile}")
|
print(f"Wrote {outfile}")
|
||||||
@ -1178,7 +1181,9 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||||
vocab = load_vocab(vocab_dir, args.vocabtype)
|
vocab = load_vocab(vocab_dir, args.vocabtype)
|
||||||
# FIXME: Try to respect vocab_dir somehow?
|
# FIXME: Try to respect vocab_dir somehow?
|
||||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
|
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||||
|
load_merges = args.vocabtype == 'bpe',
|
||||||
|
n_vocab = vocab.vocab_size)
|
||||||
|
|
||||||
model = model_plus.model
|
model = model_plus.model
|
||||||
model = convert_model_names(model, params)
|
model = convert_model_names(model, params)
|
||||||
|
@ -987,12 +987,15 @@ class SpecialVocab:
|
|||||||
merges: list[str] = []
|
merges: list[str] = []
|
||||||
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
||||||
special_token_ids: dict[str, int] = {}
|
special_token_ids: dict[str, int] = {}
|
||||||
|
n_vocab: int | None = None
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self, path: str | os.PathLike[str], load_merges: bool = False,
|
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||||
special_token_types: tuple[str, ...] | None = None,
|
special_token_types: tuple[str, ...] | None = None,
|
||||||
|
n_vocab: int | None = None,
|
||||||
):
|
):
|
||||||
self.special_token_ids = {}
|
self.special_token_ids = {}
|
||||||
|
self.n_vocab = n_vocab
|
||||||
self.load_merges = load_merges
|
self.load_merges = load_merges
|
||||||
if special_token_types is not None:
|
if special_token_types is not None:
|
||||||
self.special_token_types = special_token_types
|
self.special_token_types = special_token_types
|
||||||
@ -1002,6 +1005,16 @@ class SpecialVocab:
|
|||||||
if not self._try_load_from_tokenizer_json(path):
|
if not self._try_load_from_tokenizer_json(path):
|
||||||
self._try_load_from_config_json(path)
|
self._try_load_from_config_json(path)
|
||||||
|
|
||||||
|
def _set_special_token(self, typ: str, tid: Any):
|
||||||
|
if not isinstance(tid, int) or tid < 0:
|
||||||
|
return
|
||||||
|
if self.n_vocab is None or tid < self.n_vocab:
|
||||||
|
self.special_token_ids[typ] = tid
|
||||||
|
return
|
||||||
|
print(f'gguf: WARNING: Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping',
|
||||||
|
file = sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||||
tokenizer_file = path / 'tokenizer.json'
|
tokenizer_file = path / 'tokenizer.json'
|
||||||
if not tokenizer_file.is_file():
|
if not tokenizer_file.is_file():
|
||||||
@ -1029,10 +1042,11 @@ class SpecialVocab:
|
|||||||
tc_content = entry_content
|
tc_content = entry_content
|
||||||
else:
|
else:
|
||||||
continue
|
continue
|
||||||
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
|
# We only need the first match here.
|
||||||
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
|
maybe_token_id = next((
|
||||||
self.special_token_ids[typ] = maybe_token_id
|
atok.get('id') for atok in added_tokens
|
||||||
break
|
if atok.get('content') == tc_content), None)
|
||||||
|
self._set_special_token(typ, maybe_token_id)
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def _try_load_from_config_json(self, path: Path) -> bool:
|
def _try_load_from_config_json(self, path: Path) -> bool:
|
||||||
@ -1042,21 +1056,21 @@ class SpecialVocab:
|
|||||||
with open(config_file, encoding = 'utf-8') as f:
|
with open(config_file, encoding = 'utf-8') as f:
|
||||||
config = json.load(f)
|
config = json.load(f)
|
||||||
for typ in self.special_token_types:
|
for typ in self.special_token_types:
|
||||||
maybe_token_id = config.get(f'{typ}_token_id')
|
self._set_special_token(typ, config.get(f'{typ}_token_id'))
|
||||||
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
|
|
||||||
self.special_token_ids[typ] = maybe_token_id
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def add_to_gguf(self, gw: GGUFWriter) -> None:
|
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
|
||||||
if len(self.merges) > 0:
|
if len(self.merges) > 0:
|
||||||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
if not quiet:
|
||||||
|
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||||
gw.add_token_merges(self.merges)
|
gw.add_token_merges(self.merges)
|
||||||
for typ, tokid in self.special_token_ids.items():
|
for typ, tokid in self.special_token_ids.items():
|
||||||
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
||||||
if handler is None:
|
if handler is None:
|
||||||
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
|
print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping', file = sys.stderr)
|
||||||
continue
|
continue
|
||||||
print(f'gguf: Setting special token type {typ} to {tokid}')
|
if not quiet:
|
||||||
|
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||||
handler(tokid)
|
handler(tokid)
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
|
37
llama.cpp
37
llama.cpp
@ -2238,15 +2238,35 @@ static void llm_load_vocab(
|
|||||||
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||||||
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
|
vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
|
||||||
} else {
|
} else {
|
||||||
vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0];
|
const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
|
||||||
|
GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
|
||||||
|
vocab.linefeed_id = ids[0];
|
||||||
}
|
}
|
||||||
|
|
||||||
// special tokens
|
// special tokens
|
||||||
GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
|
{
|
||||||
GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
|
const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
|
||||||
GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
|
{ LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
|
||||||
GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
|
{ LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
|
||||||
GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
|
{ LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
|
||||||
|
{ LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
|
||||||
|
{ LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
|
||||||
|
};
|
||||||
|
for (const auto & it : special_token_types) {
|
||||||
|
const std::string & key = kv(std::get<0>(it));
|
||||||
|
int32_t & id = std::get<1>(it), old_id = id;
|
||||||
|
|
||||||
|
GGUF_GET_KEY(ctx, id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, key);
|
||||||
|
// Must be >= -1 and < vocab size. Since the key is unsigned, -1
|
||||||
|
// can only come from the default value, so there's no point in
|
||||||
|
// validating that.
|
||||||
|
if (size_t(id + 1) > vocab.id_to_token.size()) {
|
||||||
|
LLAMA_LOG_WARN("%s: bad special token: '%s' = %d, using default id %d\n",
|
||||||
|
__func__, key.c_str(), id, old_id);
|
||||||
|
id = old_id;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// build special tokens cache
|
// build special tokens cache
|
||||||
{
|
{
|
||||||
@ -6103,11 +6123,10 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
|
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
|
||||||
|
static const char * hex = "0123456789ABCDEF";
|
||||||
switch (llama_vocab_get_type(vocab)) {
|
switch (llama_vocab_get_type(vocab)) {
|
||||||
case LLAMA_VOCAB_TYPE_SPM: {
|
case LLAMA_VOCAB_TYPE_SPM: {
|
||||||
char buf[7];
|
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
|
||||||
int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
|
|
||||||
GGML_ASSERT(0 <= result && result < 7);
|
|
||||||
return vocab.token_to_id.at(buf);
|
return vocab.token_to_id.at(buf);
|
||||||
}
|
}
|
||||||
case LLAMA_VOCAB_TYPE_BPE: {
|
case LLAMA_VOCAB_TYPE_BPE: {
|
||||||
|
Loading…
Reference in New Issue
Block a user