mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
k_quants tuning for Falcon-7b (#2816)
* Make ggml-cuda.cu build with QK_K = 64 Using LLAMA_CUDA_FORCE_DMMV = ON and -nommq it runs and produces a meaningful result. * k_quants tuning for Falcon-7b --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
c48c5bb0b0
commit
a6d1189fdd
25
ggml-cuda.cu
25
ggml-cuda.cu
@ -306,11 +306,11 @@ typedef struct {
|
||||
#define QI4_K (QK_K / (4*QR4_K))
|
||||
#ifdef GGML_QKK_64
|
||||
typedef struct {
|
||||
half d[2]; // super-block scales/mins
|
||||
half dm[2]; // super-block scales/mins
|
||||
uint8_t scales[2]; // 4-bit block scales/mins
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_K;
|
||||
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
static_assert(sizeof(block_q4_K) == sizeof(half2) + QK_K/2 + 2, "wrong q4_K block size/padding");
|
||||
#else
|
||||
typedef struct {
|
||||
half2 dm; // super-block scale for quantized scales/mins
|
||||
@ -737,8 +737,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
|
||||
const int tid = threadIdx.x;
|
||||
const uint8_t * q = x[i].qs;
|
||||
float * y = yy + i*QK_K;
|
||||
const float d = (float)x[i].d[0];
|
||||
const float m = (float)x[i].d[1];
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
|
||||
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
|
||||
#endif
|
||||
@ -1155,8 +1155,8 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux16[0] = a[0] & 0x0f0f;
|
||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||
const float d = (float)x[i].d[0];
|
||||
const float m = (float)x[i].d[1];
|
||||
const float d = (float)x[i].dm[0];
|
||||
const float m = (float)x[i].dm[1];
|
||||
float sum = 0.f;
|
||||
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
|
||||
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
|
||||
@ -2845,8 +2845,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||||
aux16[0] = a[0] & 0x0f0f;
|
||||
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||||
|
||||
const float dall = bq4_K->d[0];
|
||||
const float dmin = bq4_K->d[1];
|
||||
const float dall = bq4_K->dm[0];
|
||||
const float dmin = bq4_K->dm[1];
|
||||
|
||||
const float d8_1 = __low2float(bq8_1[0].ds);
|
||||
const float d8_2 = __low2float(bq8_1[1].ds);
|
||||
@ -2929,7 +2929,11 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||
|
||||
#if QK_K == 256
|
||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
||||
#else
|
||||
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
|
||||
#endif
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
@ -3119,7 +3123,9 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
|
||||
|
||||
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
||||
|
||||
#if QK_K == 256
|
||||
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
||||
#endif
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
@ -4709,6 +4715,8 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
const int compute_capability = g_compute_capabilities[id];
|
||||
@ -4740,6 +4748,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
|
||||
mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
|
||||
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_mul_mat_q4_K_q8_1_cuda(
|
||||
|
43
llama.cpp
43
llama.cpp
@ -4776,7 +4776,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
int nx = tensor->ne[0];
|
||||
if (nx % QK_K == 0) {
|
||||
if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
@ -4800,17 +4803,39 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
} else if (name.find("ffn_down.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
|
||||
: model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (model.arch == LLM_ARCH_FALCON) {
|
||||
new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < 4) new_type = GGML_TYPE_Q5_K;
|
||||
++i_feed_forward_w2;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
if (model.arch != LLM_ARCH_FALCON) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
}
|
||||
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
|
Loading…
Reference in New Issue
Block a user