mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 10:24:35 +00:00
common : use enums for sampler types (#5418)
* common: use enums for sampler types * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * minor : spaces --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
684780141a
commit
a803333a4e
@ -340,13 +340,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = parse_samplers_input(argv[i]);
|
||||
const auto sampler_names = string_split(argv[i], ';');
|
||||
sparams.samplers_sequence = sampler_types_from_names(sampler_names);
|
||||
} else if (arg == "--sampling-seq") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = argv[i];
|
||||
sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
|
||||
} else if (arg == "--top-p") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -906,6 +907,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
const llama_sampling_params & sparams = params.sparams;
|
||||
|
||||
std::string sampler_type_chars;
|
||||
std::string sampler_type_names;
|
||||
for (const auto sampler_type : sparams.samplers_sequence) {
|
||||
sampler_type_chars += static_cast<char>(sampler_type);
|
||||
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
|
||||
}
|
||||
sampler_type_names.pop_back();
|
||||
|
||||
printf("\n");
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
printf("\n");
|
||||
@ -947,8 +956,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\' (default: %s)\n", sampler_type_names.c_str());
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
|
||||
@ -1097,45 +1106,85 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
}
|
||||
|
||||
//
|
||||
// String parsing
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input) {
|
||||
std::string output = "";
|
||||
std::vector<std::string> string_split(std::string input, char separator) {
|
||||
std::vector<std::string> parts;
|
||||
size_t separator_pos = input.find(separator);
|
||||
while (separator_pos != std::string::npos) {
|
||||
std::string part = input.substr(0, separator_pos);
|
||||
parts.emplace_back(part);
|
||||
input = input.substr(separator_pos + 1);
|
||||
separator_pos = input.find(separator);
|
||||
}
|
||||
parts.emplace_back(input);
|
||||
return parts;
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names) {
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, char> samplers_symbols {
|
||||
{"top_k", 'k'},
|
||||
{"top-k", 'k'},
|
||||
{"top_p", 'p'},
|
||||
{"top-p", 'p'},
|
||||
{"nucleus", 'p'},
|
||||
{"typical_p", 'y'},
|
||||
{"typical-p", 'y'},
|
||||
{"typical", 'y'},
|
||||
{"min_p", 'm'},
|
||||
{"min-p", 'm'},
|
||||
{"tfs_z", 'f'},
|
||||
{"tfs-z", 'f'},
|
||||
{"tfs", 'f'},
|
||||
{"temp", 't'},
|
||||
{"temperature",'t'}
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_name_map {
|
||||
{"top_k", llama_sampler_type::TOP_K},
|
||||
{"top-k", llama_sampler_type::TOP_K},
|
||||
{"top_p", llama_sampler_type::TOP_P},
|
||||
{"top-p", llama_sampler_type::TOP_P},
|
||||
{"nucleus", llama_sampler_type::TOP_P},
|
||||
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical", llama_sampler_type::TYPICAL_P},
|
||||
{"min_p", llama_sampler_type::MIN_P},
|
||||
{"min-p", llama_sampler_type::MIN_P},
|
||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||
{"tfs", llama_sampler_type::TFS_Z},
|
||||
{"temp", llama_sampler_type::TEMP},
|
||||
{"temperature", llama_sampler_type::TEMP}
|
||||
};
|
||||
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
|
||||
size_t separator = input.find(';');
|
||||
while (separator != input.npos) {
|
||||
std::string name = input.substr(0,separator);
|
||||
input = input.substr(separator+1);
|
||||
separator = input.find(';');
|
||||
|
||||
if (samplers_symbols.find(name) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[name];
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names.size());
|
||||
for (const auto& name : names) {
|
||||
const auto sampler_item = sampler_name_map.find(name);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
if (samplers_symbols.find(input) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[input];
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
|
||||
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||
{'k', llama_sampler_type::TOP_K},
|
||||
{'p', llama_sampler_type::TOP_P},
|
||||
{'y', llama_sampler_type::TYPICAL_P},
|
||||
{'m', llama_sampler_type::MIN_P},
|
||||
{'f', llama_sampler_type::TFS_Z},
|
||||
{'t', llama_sampler_type::TEMP}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names_string.size());
|
||||
for (const auto & c : names_string) {
|
||||
const auto sampler_item = sampler_name_map.find(c);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K: return "top_k";
|
||||
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||
case llama_sampler_type::TOP_P: return "top_p";
|
||||
case llama_sampler_type::MIN_P: return "min_p";
|
||||
case llama_sampler_type::TEMP: return "temp";
|
||||
default : return "";
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -162,10 +162,13 @@ std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// String parsing
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input);
|
||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names);
|
||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
@ -103,15 +103,10 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto s : params.samplers_sequence) {
|
||||
switch (s) {
|
||||
case 'k': result += "-> top_k "; break;
|
||||
case 'f': result += "-> tfs_z "; break;
|
||||
case 'y': result += "-> typical_p "; break;
|
||||
case 'p': result += "-> top_p "; break;
|
||||
case 'm': result += "-> min_p "; break;
|
||||
case 't': result += "-> temp "; break;
|
||||
default : break;
|
||||
for (auto sampler_type : params.samplers_sequence) {
|
||||
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
|
||||
if (!sampler_type_name.empty()) {
|
||||
result += "-> " + sampler_type_name + " ";
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -135,16 +130,16 @@ static void sampler_queue(
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::string & samplers_sequence = params.samplers_sequence;
|
||||
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case 't':
|
||||
for (auto sampler_type : samplers_sequence) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case llama_sampler_type::TEMP:
|
||||
if (dynatemp_range > 0) {
|
||||
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
||||
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
||||
|
@ -8,6 +8,16 @@
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
TOP_K = 'k',
|
||||
TOP_P = 'p',
|
||||
MIN_P = 'm',
|
||||
TFS_Z = 'f',
|
||||
TYPICAL_P = 'y',
|
||||
TEMP = 't'
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
@ -28,7 +38,15 @@ typedef struct llama_sampling_params {
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
llama_sampler_type::TFS_Z,
|
||||
llama_sampler_type::TYPICAL_P,
|
||||
llama_sampler_type::TOP_P,
|
||||
llama_sampler_type::MIN_P,
|
||||
llama_sampler_type::TEMP
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user