mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 03:14:35 +00:00
llama : add OLMo November 2024 support (#10394)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Add OLMo November 2024 constants * Add OLMo November 2024 converter * Add loading of OLMo November 2024 tensors and hyper parameters * Add building of OLMo November 2024 model
This commit is contained in:
parent
2a1507c162
commit
a88ad007de
@ -3040,6 +3040,11 @@ class OlmoModel(Model):
|
|||||||
return [(self.map_tensor_name(name), data_torch)]
|
return [(self.map_tensor_name(name), data_torch)]
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("Olmo1124ForCausalLM")
|
||||||
|
class Olmo1124Model(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.OLMO_1124
|
||||||
|
|
||||||
|
|
||||||
@Model.register("OlmoeForCausalLM")
|
@Model.register("OlmoeForCausalLM")
|
||||||
class OlmoeModel(Model):
|
class OlmoeModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.OLMOE
|
model_arch = gguf.MODEL_ARCH.OLMOE
|
||||||
|
@ -243,6 +243,7 @@ class MODEL_ARCH(IntEnum):
|
|||||||
COMMAND_R = auto()
|
COMMAND_R = auto()
|
||||||
DBRX = auto()
|
DBRX = auto()
|
||||||
OLMO = auto()
|
OLMO = auto()
|
||||||
|
OLMO_1124 = auto()
|
||||||
OLMOE = auto()
|
OLMOE = auto()
|
||||||
OPENELM = auto()
|
OPENELM = auto()
|
||||||
ARCTIC = auto()
|
ARCTIC = auto()
|
||||||
@ -404,6 +405,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.COMMAND_R: "command-r",
|
MODEL_ARCH.COMMAND_R: "command-r",
|
||||||
MODEL_ARCH.DBRX: "dbrx",
|
MODEL_ARCH.DBRX: "dbrx",
|
||||||
MODEL_ARCH.OLMO: "olmo",
|
MODEL_ARCH.OLMO: "olmo",
|
||||||
|
MODEL_ARCH.OLMO_1124: "olmo_1124",
|
||||||
MODEL_ARCH.OLMOE: "olmoe",
|
MODEL_ARCH.OLMOE: "olmoe",
|
||||||
MODEL_ARCH.OPENELM: "openelm",
|
MODEL_ARCH.OPENELM: "openelm",
|
||||||
MODEL_ARCH.ARCTIC: "arctic",
|
MODEL_ARCH.ARCTIC: "arctic",
|
||||||
@ -1069,6 +1071,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.OLMO_1124: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_POST_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.FFN_POST_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
MODEL_ARCH.OLMOE: [
|
MODEL_ARCH.OLMOE: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
@ -13,7 +13,7 @@ class TensorNameMap:
|
|||||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings", # falcon
|
||||||
"word_embeddings", # bloom
|
"word_embeddings", # bloom
|
||||||
"model.embed_tokens", # llama-hf nemotron olmoe
|
"model.embed_tokens", # llama-hf nemotron olmoe olmo_1124
|
||||||
"tok_embeddings", # llama-pth
|
"tok_embeddings", # llama-pth
|
||||||
"embeddings.word_embeddings", # bert nomic-bert
|
"embeddings.word_embeddings", # bert nomic-bert
|
||||||
"language_model.embedding.word_embeddings", # persimmon
|
"language_model.embedding.word_embeddings", # persimmon
|
||||||
@ -54,7 +54,7 @@ class TensorNameMap:
|
|||||||
# Output
|
# Output
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out", # gptneox
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo_1124
|
||||||
"output", # llama-pth bloom internlm2
|
"output", # llama-pth bloom internlm2
|
||||||
"word_embeddings_for_head", # persimmon
|
"word_embeddings_for_head", # persimmon
|
||||||
"lm_head.linear", # phi2
|
"lm_head.linear", # phi2
|
||||||
@ -66,7 +66,7 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.OUTPUT_NORM: (
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
"gpt_neox.final_layer_norm", # gptneox
|
"gpt_neox.final_layer_norm", # gptneox
|
||||||
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone
|
||||||
"model.norm", # llama-hf baichuan internlm2 olmoe
|
"model.norm", # llama-hf baichuan internlm2 olmoe olmo_1124
|
||||||
"norm", # llama-pth
|
"norm", # llama-pth
|
||||||
"transformer.norm_f", # mpt dbrx
|
"transformer.norm_f", # mpt dbrx
|
||||||
"ln_f", # refact bloom qwen gpt2
|
"ln_f", # refact bloom qwen gpt2
|
||||||
@ -145,7 +145,7 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Attention query
|
# Attention query
|
||||||
MODEL_TENSOR.ATTN_Q: (
|
MODEL_TENSOR.ATTN_Q: (
|
||||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe
|
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo_1124
|
||||||
"layers.{bid}.attention.wq", # llama-pth
|
"layers.{bid}.attention.wq", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.self.query", # bert
|
"encoder.layer.{bid}.attention.self.query", # bert
|
||||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||||
@ -157,7 +157,7 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Attention key
|
# Attention key
|
||||||
MODEL_TENSOR.ATTN_K: (
|
MODEL_TENSOR.ATTN_K: (
|
||||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe
|
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo_1124
|
||||||
"layers.{bid}.attention.wk", # llama-pth
|
"layers.{bid}.attention.wk", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.self.key", # bert
|
"encoder.layer.{bid}.attention.self.key", # bert
|
||||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||||
@ -170,7 +170,7 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Attention value
|
# Attention value
|
||||||
MODEL_TENSOR.ATTN_V: (
|
MODEL_TENSOR.ATTN_V: (
|
||||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe
|
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo_1124
|
||||||
"layers.{bid}.attention.wv", # llama-pth
|
"layers.{bid}.attention.wv", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.self.value", # bert
|
"encoder.layer.{bid}.attention.self.value", # bert
|
||||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||||
@ -188,7 +188,7 @@ class TensorNameMap:
|
|||||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
"h.{bid}.self_attention.dense", # bloom
|
"h.{bid}.self_attention.dense", # bloom
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo_1124
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
@ -215,7 +215,7 @@ class TensorNameMap:
|
|||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_POST_NORM: (
|
MODEL_TENSOR.ATTN_POST_NORM: (
|
||||||
"model.layers.{bid}.post_attention_layernorm", # gemma2
|
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo_1124
|
||||||
),
|
),
|
||||||
|
|
||||||
# Rotary embeddings
|
# Rotary embeddings
|
||||||
@ -250,7 +250,7 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Post feed-forward norm
|
# Post feed-forward norm
|
||||||
MODEL_TENSOR.FFN_POST_NORM: (
|
MODEL_TENSOR.FFN_POST_NORM: (
|
||||||
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
|
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo_1124
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_INP: (
|
MODEL_TENSOR.FFN_GATE_INP: (
|
||||||
@ -273,7 +273,7 @@ class TensorNameMap:
|
|||||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||||
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
||||||
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron
|
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo_1124
|
||||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||||
"encoder.layer.{bid}.intermediate.dense", # bert
|
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||||
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
||||||
@ -314,7 +314,7 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Feed-forward gate
|
# Feed-forward gate
|
||||||
MODEL_TENSOR.FFN_GATE: (
|
MODEL_TENSOR.FFN_GATE: (
|
||||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo_1124
|
||||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||||
"transformer.h.{bid}.mlp.w2", # qwen
|
"transformer.h.{bid}.mlp.w2", # qwen
|
||||||
"transformer.h.{bid}.mlp.c_fc2", # jais
|
"transformer.h.{bid}.mlp.c_fc2", # jais
|
||||||
@ -346,7 +346,7 @@ class TensorNameMap:
|
|||||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||||
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
||||||
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron
|
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo_1124
|
||||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||||
"encoder.layer.{bid}.output.dense", # bert
|
"encoder.layer.{bid}.output.dense", # bert
|
||||||
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
||||||
@ -383,7 +383,7 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||||
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon
|
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo_1124
|
||||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
"transformer.layers.{bid}.attn.q_norm", # openelm
|
||||||
@ -392,7 +392,7 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.ATTN_K_NORM: (
|
MODEL_TENSOR.ATTN_K_NORM: (
|
||||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||||
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon
|
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo_1124
|
||||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
"transformer.layers.{bid}.attn.k_norm", # openelm
|
||||||
|
186
src/llama.cpp
186
src/llama.cpp
@ -179,6 +179,7 @@ enum llm_arch {
|
|||||||
LLM_ARCH_COMMAND_R,
|
LLM_ARCH_COMMAND_R,
|
||||||
LLM_ARCH_DBRX,
|
LLM_ARCH_DBRX,
|
||||||
LLM_ARCH_OLMO,
|
LLM_ARCH_OLMO,
|
||||||
|
LLM_ARCH_OLMO_1124,
|
||||||
LLM_ARCH_OLMOE,
|
LLM_ARCH_OLMOE,
|
||||||
LLM_ARCH_OPENELM,
|
LLM_ARCH_OPENELM,
|
||||||
LLM_ARCH_ARCTIC,
|
LLM_ARCH_ARCTIC,
|
||||||
@ -232,6 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||||
{ LLM_ARCH_DBRX, "dbrx" },
|
{ LLM_ARCH_DBRX, "dbrx" },
|
||||||
{ LLM_ARCH_OLMO, "olmo" },
|
{ LLM_ARCH_OLMO, "olmo" },
|
||||||
|
{ LLM_ARCH_OLMO_1124, "olmo_1124" },
|
||||||
{ LLM_ARCH_OLMOE, "olmoe" },
|
{ LLM_ARCH_OLMOE, "olmoe" },
|
||||||
{ LLM_ARCH_OPENELM, "openelm" },
|
{ LLM_ARCH_OPENELM, "openelm" },
|
||||||
{ LLM_ARCH_ARCTIC, "arctic" },
|
{ LLM_ARCH_ARCTIC, "arctic" },
|
||||||
@ -1207,6 +1209,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_OLMO_1124,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_OLMOE,
|
LLM_ARCH_OLMOE,
|
||||||
{
|
{
|
||||||
@ -5877,6 +5898,17 @@ static void llm_load_hparams(
|
|||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_OLMO_1124:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 16: model.type = e_model::MODEL_1B; break;
|
||||||
|
case 32: model.type = e_model::MODEL_7B; break;
|
||||||
|
case 40: model.type = e_model::MODEL_13B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_OLMOE:
|
case LLM_ARCH_OLMOE:
|
||||||
{
|
{
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
@ -8559,6 +8591,31 @@ static bool llm_load_tensors(
|
|||||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_OLMO_1124:
|
||||||
|
{
|
||||||
|
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
// output
|
||||||
|
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||||
|
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
|
||||||
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
|
||||||
|
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
|
||||||
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||||
|
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_OLMOE:
|
case LLM_ARCH_OLMOE:
|
||||||
{
|
{
|
||||||
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
@ -14424,6 +14481,130 @@ struct llm_build_context {
|
|||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_olmo_1124() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
// self_attention
|
||||||
|
{
|
||||||
|
// compute Q and K and RoPE them
|
||||||
|
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(Qcur, "Qcur_normed", il);
|
||||||
|
|
||||||
|
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(Kcur, "Kcur_normed", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, Qcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur_rope", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, Kcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur_rope", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||||
|
model.layers[il].wo, NULL,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.layers[il].attn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, il);
|
||||||
|
cb(cur, "attn_post_norm", il);
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
cur = llm_build_ffn(ctx0, lctx, ffn_inp,
|
||||||
|
model.layers[il].ffn_up, NULL, NULL,
|
||||||
|
model.layers[il].ffn_gate, NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, NULL, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.layers[il].ffn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "ffn_post_norm", -1);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
// based on the build_qwen2moe() function, changes:
|
// based on the build_qwen2moe() function, changes:
|
||||||
// * removed shared experts
|
// * removed shared experts
|
||||||
// * removed bias
|
// * removed bias
|
||||||
@ -16616,6 +16797,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
{
|
{
|
||||||
result = llm.build_olmo();
|
result = llm.build_olmo();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_OLMO_1124:
|
||||||
|
{
|
||||||
|
result = llm.build_olmo_1124();
|
||||||
|
} break;
|
||||||
case LLM_ARCH_OLMOE:
|
case LLM_ARCH_OLMOE:
|
||||||
{
|
{
|
||||||
result = llm.build_olmoe();
|
result = llm.build_olmoe();
|
||||||
@ -19885,6 +20070,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
case LLM_ARCH_QWEN:
|
case LLM_ARCH_QWEN:
|
||||||
case LLM_ARCH_QWEN2:
|
case LLM_ARCH_QWEN2:
|
||||||
case LLM_ARCH_QWEN2MOE:
|
case LLM_ARCH_QWEN2MOE:
|
||||||
|
case LLM_ARCH_OLMO_1124:
|
||||||
case LLM_ARCH_OLMOE:
|
case LLM_ARCH_OLMOE:
|
||||||
case LLM_ARCH_PHI2:
|
case LLM_ARCH_PHI2:
|
||||||
case LLM_ARCH_PHI3:
|
case LLM_ARCH_PHI3:
|
||||||
|
Loading…
Reference in New Issue
Block a user