llama : add OLMo November 2024 support (#10394)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled

* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model
This commit is contained in:
Shane A 2024-11-19 01:04:08 -08:00 committed by GitHub
parent 2a1507c162
commit a88ad007de
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 223 additions and 14 deletions

View File

@ -3040,6 +3040,11 @@ class OlmoModel(Model):
return [(self.map_tensor_name(name), data_torch)] return [(self.map_tensor_name(name), data_torch)]
@Model.register("Olmo1124ForCausalLM")
class Olmo1124Model(Model):
model_arch = gguf.MODEL_ARCH.OLMO_1124
@Model.register("OlmoeForCausalLM") @Model.register("OlmoeForCausalLM")
class OlmoeModel(Model): class OlmoeModel(Model):
model_arch = gguf.MODEL_ARCH.OLMOE model_arch = gguf.MODEL_ARCH.OLMOE

View File

@ -243,6 +243,7 @@ class MODEL_ARCH(IntEnum):
COMMAND_R = auto() COMMAND_R = auto()
DBRX = auto() DBRX = auto()
OLMO = auto() OLMO = auto()
OLMO_1124 = auto()
OLMOE = auto() OLMOE = auto()
OPENELM = auto() OPENELM = auto()
ARCTIC = auto() ARCTIC = auto()
@ -404,6 +405,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.COMMAND_R: "command-r", MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo", MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OLMO_1124: "olmo_1124",
MODEL_ARCH.OLMOE: "olmoe", MODEL_ARCH.OLMOE: "olmoe",
MODEL_ARCH.OPENELM: "openelm", MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic", MODEL_ARCH.ARCTIC: "arctic",
@ -1069,6 +1071,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.OLMO_1124: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_POST_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OLMOE: [ MODEL_ARCH.OLMOE: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View File

@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon "transformer.word_embeddings", # falcon
"word_embeddings", # bloom "word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron olmoe "model.embed_tokens", # llama-hf nemotron olmoe olmo_1124
"tok_embeddings", # llama-pth "tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert "embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon "language_model.embedding.word_embeddings", # persimmon
@ -54,7 +54,7 @@ class TensorNameMap:
# Output # Output
MODEL_TENSOR.OUTPUT: ( MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox "embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo_1124
"output", # llama-pth bloom internlm2 "output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon "word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2 "lm_head.linear", # phi2
@ -66,7 +66,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: ( MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox "gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon jais exaone "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
"model.norm", # llama-hf baichuan internlm2 olmoe "model.norm", # llama-hf baichuan internlm2 olmoe olmo_1124
"norm", # llama-pth "norm", # llama-pth
"transformer.norm_f", # mpt dbrx "transformer.norm_f", # mpt dbrx
"ln_f", # refact bloom qwen gpt2 "ln_f", # refact bloom qwen gpt2
@ -145,7 +145,7 @@ class TensorNameMap:
# Attention query # Attention query
MODEL_TENSOR.ATTN_Q: ( MODEL_TENSOR.ATTN_Q: (
"model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wq", # llama-pth "layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert "encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j "transformer.h.{bid}.attn.q_proj", # gpt-j
@ -157,7 +157,7 @@ class TensorNameMap:
# Attention key # Attention key
MODEL_TENSOR.ATTN_K: ( MODEL_TENSOR.ATTN_K: (
"model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wk", # llama-pth "layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert "encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j "transformer.h.{bid}.attn.k_proj", # gpt-j
@ -170,7 +170,7 @@ class TensorNameMap:
# Attention value # Attention value
MODEL_TENSOR.ATTN_V: ( MODEL_TENSOR.ATTN_V: (
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wv", # llama-pth "layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert "encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j "transformer.h.{bid}.attn.v_proj", # gpt-j
@ -188,7 +188,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.blocks.{bid}.attn.out_proj", # mpt
"transformer.h.{bid}.self_attention.dense", # falcon "transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom "h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo_1124
"layers.{bid}.attention.wo", # llama-pth "layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert "encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j "transformer.h.{bid}.attn.out_proj", # gpt-j
@ -215,7 +215,7 @@ class TensorNameMap:
), ),
MODEL_TENSOR.ATTN_POST_NORM: ( MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2 "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo_1124
), ),
# Rotary embeddings # Rotary embeddings
@ -250,7 +250,7 @@ class TensorNameMap:
# Post feed-forward norm # Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: ( MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo_1124
), ),
MODEL_TENSOR.FFN_GATE_INP: ( MODEL_TENSOR.FFN_GATE_INP: (
@ -273,7 +273,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.blocks.{bid}.ffn.up_proj", # mpt
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
"h.{bid}.mlp.dense_h_to_4h", # bloom "h.{bid}.mlp.dense_h_to_4h", # bloom
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo_1124
"layers.{bid}.feed_forward.w3", # llama-pth "layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert "encoder.layer.{bid}.intermediate.dense", # bert
"transformer.h.{bid}.mlp.fc_in", # gpt-j "transformer.h.{bid}.mlp.fc_in", # gpt-j
@ -314,7 +314,7 @@ class TensorNameMap:
# Feed-forward gate # Feed-forward gate
MODEL_TENSOR.FFN_GATE: ( MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo_1124
"layers.{bid}.feed_forward.w1", # llama-pth "layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen "transformer.h.{bid}.mlp.w2", # qwen
"transformer.h.{bid}.mlp.c_fc2", # jais "transformer.h.{bid}.mlp.c_fc2", # jais
@ -346,7 +346,7 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.blocks.{bid}.ffn.down_proj", # mpt
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
"h.{bid}.mlp.dense_4h_to_h", # bloom "h.{bid}.mlp.dense_4h_to_h", # bloom
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo_1124
"layers.{bid}.feed_forward.w2", # llama-pth "layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert "encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j "transformer.h.{bid}.mlp.fc_out", # gpt-j
@ -383,7 +383,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_Q_NORM: ( MODEL_TENSOR.ATTN_Q_NORM: (
"language_model.encoder.layers.{bid}.self_attention.q_layernorm", "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
"model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo_1124
"transformer.blocks.{bid}.attn.q_ln", # sea-lion "transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm "transformer.layers.{bid}.attn.q_norm", # openelm
@ -392,7 +392,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_K_NORM: ( MODEL_TENSOR.ATTN_K_NORM: (
"language_model.encoder.layers.{bid}.self_attention.k_layernorm", "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo_1124
"transformer.blocks.{bid}.attn.k_ln", # sea-lion "transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm "transformer.layers.{bid}.attn.k_norm", # openelm

View File

@ -179,6 +179,7 @@ enum llm_arch {
LLM_ARCH_COMMAND_R, LLM_ARCH_COMMAND_R,
LLM_ARCH_DBRX, LLM_ARCH_DBRX,
LLM_ARCH_OLMO, LLM_ARCH_OLMO,
LLM_ARCH_OLMO_1124,
LLM_ARCH_OLMOE, LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM, LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC, LLM_ARCH_ARCTIC,
@ -232,6 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_COMMAND_R, "command-r" }, { LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_DBRX, "dbrx" },
{ LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_OLMO, "olmo" },
{ LLM_ARCH_OLMO_1124, "olmo_1124" },
{ LLM_ARCH_OLMOE, "olmoe" }, { LLM_ARCH_OLMOE, "olmoe" },
{ LLM_ARCH_OPENELM, "openelm" }, { LLM_ARCH_OPENELM, "openelm" },
{ LLM_ARCH_ARCTIC, "arctic" }, { LLM_ARCH_ARCTIC, "arctic" },
@ -1207,6 +1209,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_OLMO_1124,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_OLMOE, LLM_ARCH_OLMOE,
{ {
@ -5877,6 +5898,17 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_OLMO_1124:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 16: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -8559,6 +8591,31 @@ static bool llm_load_tensors(
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} }
} break; } break;
case LLM_ARCH_OLMO_1124:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
{ {
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -14424,6 +14481,130 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_olmo_1124() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
cur = inpL;
// self_attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur_normed", il);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur_rope", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur_rope", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_post_norm", il);
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_ffn(ctx0, lctx, ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
// based on the build_qwen2moe() function, changes: // based on the build_qwen2moe() function, changes:
// * removed shared experts // * removed shared experts
// * removed bias // * removed bias
@ -16616,6 +16797,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_olmo(); result = llm.build_olmo();
} break; } break;
case LLM_ARCH_OLMO_1124:
{
result = llm.build_olmo_1124();
} break;
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
{ {
result = llm.build_olmoe(); result = llm.build_olmoe();
@ -19885,6 +20070,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_QWEN: case LLM_ARCH_QWEN:
case LLM_ARCH_QWEN2: case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN2MOE:
case LLM_ARCH_OLMO_1124:
case LLM_ARCH_OLMOE: case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2: case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3: case LLM_ARCH_PHI3: