ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)

* fixed mul-mat error for old GPUs

* style fixes

* add mul mat src1 f16 test cases, fix more cases

ggml-ci

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
bssrdf 2023-12-29 03:32:31 -05:00 committed by Georgi Gerganov
parent ca38b8d334
commit afc8c19291
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
4 changed files with 60 additions and 53 deletions

View File

@ -614,10 +614,14 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c
} }
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return true; switch (op->op) {
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
default:
return true;
}
GGML_UNUSED(backend); GGML_UNUSED(backend);
GGML_UNUSED(op);
} }
static struct ggml_backend_i cpu_backend_i = { static struct ggml_backend_i cpu_backend_i = {

View File

@ -7485,6 +7485,8 @@ static void ggml_cuda_op_dequantize_mul_mat_vec(
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low; const int64_t row_diff = row_high - row_low;
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16 #ifdef GGML_CUDA_F16
cuda_pool_alloc<half> src1_dfloat_a; cuda_pool_alloc<half> src1_dfloat_a;
@ -7577,6 +7579,7 @@ static void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = g_device_caps[id].cc; const int compute_capability = g_device_caps[id].cc;
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
//printf("this branch\n");
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
cuda_pool_alloc<half> src0_as_f16; cuda_pool_alloc<half> src0_as_f16;
if (src0->type != GGML_TYPE_F16) { if (src0->type != GGML_TYPE_F16) {
@ -7614,9 +7617,9 @@ static void ggml_cuda_op_mul_mat_cublas(
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
} } else {
else {
cuda_pool_alloc<float> src0_ddq_as_f32; cuda_pool_alloc<float> src0_ddq_as_f32;
cuda_pool_alloc<float> src1_ddq_as_f32;
if (src0->type != GGML_TYPE_F32) { if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
@ -7624,7 +7627,15 @@ static void ggml_cuda_op_mul_mat_cublas(
src0_ddq_as_f32.alloc(row_diff*ne00); src0_ddq_as_f32.alloc(row_diff*ne00);
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
} }
if (src1->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src1_ddq_as_f32.alloc(src1_ncols*ne10);
to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
const float alpha = 1.0f; const float alpha = 1.0f;
const float beta = 0.0f; const float beta = 0.0f;
@ -7633,9 +7644,9 @@ static void ggml_cuda_op_mul_mat_cublas(
CUBLAS_CHECK( CUBLAS_CHECK(
cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10, row_diff, src1_ncols, ne10,
&alpha, src0_ddf_i, ne00, &alpha, src0_ddf_i, ne00,
src1_ddf_i, ne10, src1_ddf1_i, ne10,
&beta, dst_dd_i, ldc)); &beta, dst_dd_i, ldc));
} }
(void) dst; (void) dst;
@ -8035,6 +8046,7 @@ static void ggml_cuda_op_mul_mat(
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
@ -8481,9 +8493,9 @@ static __global__ void k_compute_batched_ptrs(
int64_t i03 = i13 / r3; int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2; int64_t i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2; ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
} }
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -8492,28 +8504,10 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00); GGML_TENSOR_BINARY_OP_LOCALS
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t nb01 = src0->nb[1]; const int64_t ne_dst = ggml_nelements(dst);
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
const int64_t ne1 = ggml_nelements(src1);
const int64_t ne = ggml_nelements(dst);
ggml_cuda_set_device(g_main_device); ggml_cuda_set_device(g_main_device);
cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
@ -8522,7 +8516,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
void * src0_ddq = src0_extra->data_device[g_main_device]; void * src0_ddq = src0_extra->data_device[g_main_device];
half * src0_as_f16 = (half *) src0_ddq; half * src0_f16 = (half *) src0_ddq;
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
@ -8531,11 +8525,15 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
// convert src1 to fp16 // convert src1 to fp16
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); cuda_pool_alloc<half> src1_f16_alloc;
GGML_ASSERT(to_fp16_cuda != nullptr); if (src1->type != GGML_TYPE_F16) {
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
cuda_pool_alloc<half> src1_as_f16(ne1); const int64_t ne_src1 = ggml_nelements(src1);
to_fp16_cuda(src1_ddf, src1_as_f16.get(), ne1, main_stream); src1_f16_alloc.alloc(ne_src1);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
}
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
cuda_pool_alloc<half> dst_f16; cuda_pool_alloc<half> dst_f16;
char * dst_t; char * dst_t;
@ -8557,7 +8555,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
const void * beta = &beta_f16; const void * beta = &beta_f16;
if (dst->op_params[0] == GGML_PREC_DEFAULT) { if (dst->op_params[0] == GGML_PREC_DEFAULT) {
dst_t = (char *) dst_f16.alloc(ne); dst_t = (char *) dst_f16.alloc(ne_dst);
nbd2 /= sizeof(float) / sizeof(half); nbd2 /= sizeof(float) / sizeof(half);
nbd3 /= sizeof(float) / sizeof(half); nbd3 /= sizeof(float) / sizeof(half);
@ -8604,9 +8602,9 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_CHECK( CUBLAS_CHECK(
cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, ne01, ne11, ne10,
alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
(const char *) src1_as_f16.get(), CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
ne12*ne13, ne12*ne13,
cu_compute_type, cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); CUBLAS_GEMM_DEFAULT_TENSOR_OP));
@ -8619,12 +8617,13 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
dim3 block_dims(ne13, ne12); dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_as_f16, src1_as_f16.get(), dst_t, src0_f16, src1_f16, dst_t,
ptrs_src.get(), ptrs_dst.get(), ptrs_src.get(), ptrs_dst.get(),
ne12, ne13, ne12, ne13,
ne23, ne23,
nb02, nb03, nb02, nb03,
nb12, nb13, src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
nbd2, nbd3, nbd2, nbd3,
r2, r3); r2, r3);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
@ -8632,8 +8631,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_CHECK( CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, ne01, ne11, ne10,
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/sizeof(half), alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/sizeof(float), (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01, beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
ne23, ne23,
cu_compute_type, cu_compute_type,
@ -8643,7 +8642,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
if (dst->op_params[0] == GGML_PREC_DEFAULT) { if (dst->op_params[0] == GGML_PREC_DEFAULT) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_ddf, ne, main_stream); to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
} }
} }
@ -8682,13 +8681,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { } else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch // KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst); ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { } else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch // KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst); ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->type == GGML_TYPE_F32) {
#ifdef GGML_CUDA_FORCE_DMMV #ifdef GGML_CUDA_FORCE_DMMV
const bool use_mul_mat_vec_q = false; const bool use_mul_mat_vec_q = false;
#else #else

2
ggml.c
View File

@ -9687,7 +9687,7 @@ static void ggml_compute_forward_mul_mat(
const size_t row_size = ggml_row_size(vec_dot_type, ne10); const size_t row_size = ggml_row_size(vec_dot_type, ne10);
assert(params->wsize >= ne11*ne12*ne13*row_size); assert(params->wsize >= ne11*ne12*ne13*row_size);
assert(src1->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i12 = 0; i12 < ne12; ++i12) {

View File

@ -350,13 +350,18 @@ struct test_case {
fflush(stdout); fflush(stdout);
// check if backends support op // check if backends support op
bool supported = true;
for (ggml_backend_t backend : {backend1, backend2}) { for (ggml_backend_t backend : {backend1, backend2}) {
if (!ggml_backend_supports_op(backend, out)) { if (!ggml_backend_supports_op(backend, out)) {
printf("not supported\n"); printf("not supported [%s] ", ggml_backend_name(backend));
ggml_free(ctx); supported = false;
return true;
} }
} }
if (!supported) {
printf("\n");
ggml_free(ctx);
return true;
}
// post-graph sentinel // post-graph sentinel
add_sentinel(ctx); add_sentinel(ctx);
@ -1505,8 +1510,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
} }
for (ggml_type type_a : all_types) { for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// FIXME: CPU crashes on f16xf16
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));