mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 19:21:46 +00:00
sampling : avoid expensive softmax during greedy sampling (#9605)
* sampling : avoid expensive softmax during greedy sampling ggml-ci * speculative : fix default RNG seed + set sparams.n_probs * Update tests/test-sampling.cpp Co-authored-by: slaren <slarengh@gmail.com> * sampling : add clarifying comment [no ci] --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
c087b6f11d
commit
b0f27361f3
@ -209,7 +209,15 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
} else {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
if (params.n_probs > 0) {
|
||||
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
|
||||
//
|
||||
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
|
||||
// it is much faster, since we avoid sorting all tokens and should give a good approximation
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
|
||||
}
|
||||
|
||||
|
@ -32,6 +32,9 @@ struct seq_draft {
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
@ -49,7 +52,7 @@ int main(int argc, char ** argv) {
|
||||
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
||||
const float p_split = params.p_split;
|
||||
|
||||
std::default_random_engine rng(params.sparams.seed);
|
||||
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
// init llama.cpp
|
||||
|
@ -1066,6 +1066,7 @@ extern "C" {
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
|
@ -3,13 +3,14 @@
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-grammar.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <cassert>
|
||||
#include <cfloat>
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <unordered_map>
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "llama-sampling.h"
|
||||
|
||||
#ifdef NDEBUG
|
||||
#undef NDEBUG
|
||||
@ -249,6 +248,45 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler
|
||||
samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
|
||||
}
|
||||
|
||||
static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
|
||||
std::vector<llama_token_data> cur(data.size());
|
||||
std::copy(data.begin(), data.end(), cur.begin());
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
llama_sampler_apply(cnstr, &cur_p);
|
||||
llama_sampler_reset(cnstr);
|
||||
const int64_t t_start = ggml_time_us();
|
||||
for (int i = 0; i < n_iter; i++) {
|
||||
std::copy(data.begin(), data.end(), cur.begin());
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
llama_sampler_apply(cnstr, &cur_p);
|
||||
llama_sampler_reset(cnstr);
|
||||
}
|
||||
const int64_t t_end = ggml_time_us();
|
||||
llama_sampler_free(cnstr);
|
||||
printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
|
||||
}
|
||||
|
||||
#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
|
||||
|
||||
static void test_perf() {
|
||||
const int n_vocab = 1 << 17;
|
||||
|
||||
std::vector<llama_token_data> data;
|
||||
|
||||
data.reserve(n_vocab);
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
const float logit = 2.0f*((float)(rand())/RAND_MAX - 0.5f);
|
||||
data.emplace_back(llama_token_data{i, logit, 0.0f});
|
||||
}
|
||||
|
||||
BENCH(llama_sampler_init_top_k (40), data, 32);
|
||||
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_softmax (), data, 32);
|
||||
}
|
||||
|
||||
int main(void) {
|
||||
ggml_time_init();
|
||||
|
||||
@ -316,5 +354,7 @@ int main(void) {
|
||||
|
||||
printf("OK\n");
|
||||
|
||||
test_perf();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user