llama : refactor quantization to avoid <mutex> header

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-01-02 15:53:28 +02:00
parent 83e633c27e
commit b5af7ad84f
No known key found for this signature in database
GPG Key ID: BF970631944C16B7

View File

@ -68,7 +68,6 @@
#include <initializer_list> #include <initializer_list>
#include <map> #include <map>
#include <memory> #include <memory>
#include <mutex>
#include <numeric> #include <numeric>
#include <queue> #include <queue>
#include <random> #include <random>
@ -9085,7 +9084,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<std::thread> workers; std::vector<std::thread> workers;
workers.reserve(nthread); workers.reserve(nthread);
std::mutex mutex;
int idx = 0; int idx = 0;
@ -9159,7 +9157,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_size = ggml_nbytes(tensor); new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else { } else {
const size_t nelements = ggml_nelements(tensor); const size_t ne = ggml_nelements(tensor);
float * f32_data; float * f32_data;
@ -9168,53 +9166,60 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else { } else {
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread); llama_convert_tensor_internal(tensor, f32_conv_buf, workers, ne, nthread);
f32_data = (float *) f32_conv_buf.data(); f32_data = (float *) f32_conv_buf.data();
} }
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type)); LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout); fflush(stdout);
if (work.size() < nelements * 4) { if (work.size() < ne * 4) {
work.resize(nelements * 4); // upper bound on size work.resize(ne * 4); // upper bound on size
} }
new_data = work.data(); new_data = work.data();
std::array<int64_t, 1 << 4> hist_cur = {}; std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512; {
const int nchunk = (nelements + chunk_size - 1)/chunk_size; static const size_t chunk_size = 32*512;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) { const int nchunk = GGML_PAD(ne, chunk_size)/chunk_size;
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
} else {
size_t counter = 0; std::vector<size_t> size_th(nthread_use, 0);
new_size = 0; std::vector<std::array<int64_t, 1 << 4>> hist_cur_th(nthread_use);
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
std::array<int64_t, 1 << 4> local_hist = {}; auto compute = [&size_th, &hist_cur_th, new_type, f32_data, new_data, ne, nchunk, nthread_use](int tid) {
size_t local_size = 0; auto & local_size = size_th[tid];
while (true) { auto & local_hist = hist_cur_th[tid];
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size; for (int ch = tid; ch < nchunk; ch += nthread_use) {
if (first >= nelements) { const size_t first = ch * chunk_size;
if (local_size > 0) { const size_t last = std::min(ne, first + chunk_size);
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data()); local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
} }
}; };
for (int it = 0; it < nthread_use - 1; ++it) { for (int it = 0; it < nthread_use - 1; ++it) {
workers.emplace_back(compute); workers.emplace_back(compute, it);
} }
compute();
for (auto & w : workers) { w.join(); } compute(nthread_use - 1);
for (auto & w : workers) {
w.join();
}
workers.clear(); workers.clear();
new_size = 0;
for (int it = 0; it < nthread_use; ++it) {
for (int j = 0; j < int(hist_cur.size()); ++j) {
hist_cur[j] += hist_cur_th[it][j];
}
new_size += size_th[it];
}
} }
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
@ -9226,7 +9231,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tot_count > 0) { if (tot_count > 0) {
for (size_t i = 0; i < hist_cur.size(); i++) { for (size_t i = 0; i < hist_cur.size(); i++) {
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(ne));
} }
} }
LLAMA_LOG_INFO("\n"); LLAMA_LOG_INFO("\n");