mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
llama : refactor quantization to avoid <mutex> header
ggml-ci
This commit is contained in:
parent
83e633c27e
commit
b5af7ad84f
75
llama.cpp
75
llama.cpp
@ -68,7 +68,6 @@
|
||||
#include <initializer_list>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
#include <numeric>
|
||||
#include <queue>
|
||||
#include <random>
|
||||
@ -9085,7 +9084,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
std::vector<std::thread> workers;
|
||||
workers.reserve(nthread);
|
||||
std::mutex mutex;
|
||||
|
||||
int idx = 0;
|
||||
|
||||
@ -9159,7 +9157,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
new_size = ggml_nbytes(tensor);
|
||||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
} else {
|
||||
const size_t nelements = ggml_nelements(tensor);
|
||||
const size_t ne = ggml_nelements(tensor);
|
||||
|
||||
float * f32_data;
|
||||
|
||||
@ -9168,53 +9166,60 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||||
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||||
} else {
|
||||
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, ne, nthread);
|
||||
f32_data = (float *) f32_conv_buf.data();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
|
||||
fflush(stdout);
|
||||
|
||||
if (work.size() < nelements * 4) {
|
||||
work.resize(nelements * 4); // upper bound on size
|
||||
if (work.size() < ne * 4) {
|
||||
work.resize(ne * 4); // upper bound on size
|
||||
}
|
||||
new_data = work.data();
|
||||
|
||||
std::array<int64_t, 1 << 4> hist_cur = {};
|
||||
|
||||
static const int chunk_size = 32 * 512;
|
||||
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
||||
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
||||
if (nthread_use < 2) {
|
||||
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
|
||||
} else {
|
||||
size_t counter = 0;
|
||||
new_size = 0;
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
|
||||
std::array<int64_t, 1 << 4> local_hist = {};
|
||||
size_t local_size = 0;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
size_t first = counter; counter += chunk_size;
|
||||
if (first >= nelements) {
|
||||
if (local_size > 0) {
|
||||
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||
hist_cur[j] += local_hist[j];
|
||||
}
|
||||
new_size += local_size;
|
||||
}
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
size_t last = std::min(nelements, first + chunk_size);
|
||||
{
|
||||
static const size_t chunk_size = 32*512;
|
||||
|
||||
const int nchunk = GGML_PAD(ne, chunk_size)/chunk_size;
|
||||
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
||||
|
||||
std::vector<size_t> size_th(nthread_use, 0);
|
||||
std::vector<std::array<int64_t, 1 << 4>> hist_cur_th(nthread_use);
|
||||
|
||||
auto compute = [&size_th, &hist_cur_th, new_type, f32_data, new_data, ne, nchunk, nthread_use](int tid) {
|
||||
auto & local_size = size_th[tid];
|
||||
auto & local_hist = hist_cur_th[tid];
|
||||
|
||||
for (int ch = tid; ch < nchunk; ch += nthread_use) {
|
||||
const size_t first = ch * chunk_size;
|
||||
const size_t last = std::min(ne, first + chunk_size);
|
||||
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
||||
}
|
||||
};
|
||||
|
||||
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||
workers.emplace_back(compute);
|
||||
workers.emplace_back(compute, it);
|
||||
}
|
||||
compute();
|
||||
for (auto & w : workers) { w.join(); }
|
||||
|
||||
compute(nthread_use - 1);
|
||||
|
||||
for (auto & w : workers) {
|
||||
w.join();
|
||||
}
|
||||
|
||||
workers.clear();
|
||||
|
||||
new_size = 0;
|
||||
for (int it = 0; it < nthread_use; ++it) {
|
||||
for (int j = 0; j < int(hist_cur.size()); ++j) {
|
||||
hist_cur[j] += hist_cur_th[it][j];
|
||||
}
|
||||
new_size += size_th[it];
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
@ -9226,7 +9231,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
if (tot_count > 0) {
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
|
||||
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(ne));
|
||||
}
|
||||
}
|
||||
LLAMA_LOG_INFO("\n");
|
||||
|
Loading…
Reference in New Issue
Block a user