mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 20:14:29 +00:00
Merge branch 'master' of https://github.com/ggerganov/llama.cpp
This commit is contained in:
commit
b716eeb72a
2
.gitignore
vendored
2
.gitignore
vendored
@ -45,6 +45,7 @@ models-mnt
|
||||
/infill
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
/llava
|
||||
/main
|
||||
/metal
|
||||
/perplexity
|
||||
@ -56,6 +57,7 @@ models-mnt
|
||||
/server
|
||||
/simple
|
||||
/batched
|
||||
/batched-bench
|
||||
/export-lora
|
||||
/finetune
|
||||
/speculative
|
||||
|
@ -422,8 +422,7 @@ endif()
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||
-Werror=implicit-function-declaration)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||
set(host_cxx_flags "")
|
||||
|
||||
@ -455,7 +454,8 @@ if (LLAMA_ALL_WARNINGS)
|
||||
set(c_flags ${c_flags} ${warning_flags})
|
||||
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${host_cxx_flags}>")
|
||||
|
||||
endif()
|
||||
|
||||
|
102
Makefile
102
Makefile
@ -1,8 +1,14 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server embd-input-test gguf llama-bench llava baby-llama beam-search \
|
||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@ -172,6 +178,24 @@ else
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_THREAD
|
||||
MK_CFLAGS += -fsanitize=thread -g
|
||||
MK_CXXFLAGS += -fsanitize=thread -g
|
||||
MK_LDFLAGS += -fsanitize=thread -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_ADDRESS
|
||||
MK_CFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
MK_CXXFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
MK_LDFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_UNDEFINED
|
||||
MK_CFLAGS += -fsanitize=undefined -g
|
||||
MK_CXXFLAGS += -fsanitize=undefined -g
|
||||
MK_LDFLAGS += -fsanitize=undefined -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
@ -520,7 +544,13 @@ OBJS += ggml-alloc.o ggml-backend.o
|
||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common.o: common/common.cpp common/common.h build-info.h common/log.h
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
|
||||
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
sampling.o: common/sampling.cpp $(COMMON_H_DEPS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
console.o: common/console.cpp common/console.h
|
||||
@ -542,19 +572,22 @@ clean:
|
||||
# Examples
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
@ -563,53 +596,56 @@ quantize: examples/quantize/quantize.cpp build-info.h ggml.
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
llava: examples/llava/llava.cpp examples/llava/llava-utils.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS)
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
@ -650,40 +686,40 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-c.o: tests/test-c.c llama.h
|
||||
|
@ -279,7 +279,7 @@ In order to build llama.cpp you have three different options.
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||||
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
||||
argument.
|
||||
|
||||
### MPI Build
|
||||
|
@ -128,17 +128,18 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser });
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
10
ci/run.sh
10
ci/run.sh
@ -496,10 +496,12 @@ test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
|
@ -5,6 +5,8 @@ set(TARGET common)
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
sampling.h
|
||||
sampling.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
|
@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
std::string arg;
|
||||
gpt_params default_params;
|
||||
const std::string arg_prefix = "--";
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_k = std::stoi(argv[i]);
|
||||
sparams.top_k = std::stoi(argv[i]);
|
||||
} else if (arg == "-c" || arg == "--ctx-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -216,73 +217,73 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_p = std::stof(argv[i]);
|
||||
sparams.top_p = std::stof(argv[i]);
|
||||
} else if (arg == "--temp") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.temp = std::stof(argv[i]);
|
||||
sparams.temp = std::stof(argv[i]);
|
||||
} else if (arg == "--tfs") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.tfs_z = std::stof(argv[i]);
|
||||
sparams.tfs_z = std::stof(argv[i]);
|
||||
} else if (arg == "--typical") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.typical_p = std::stof(argv[i]);
|
||||
sparams.typical_p = std::stof(argv[i]);
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_last_n = std::stoi(argv[i]);
|
||||
sparams.repeat_last_n = std::stoi(argv[i]);
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_penalty = std::stof(argv[i]);
|
||||
sparams.repeat_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--frequency-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.frequency_penalty = std::stof(argv[i]);
|
||||
sparams.frequency_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--presence-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.presence_penalty = std::stof(argv[i]);
|
||||
sparams.presence_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat = std::stoi(argv[i]);
|
||||
sparams.mirostat = std::stoi(argv[i]);
|
||||
} else if (arg == "--mirostat-lr") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_eta = std::stof(argv[i]);
|
||||
sparams.mirostat_eta = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat-ent") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_tau = std::stof(argv[i]);
|
||||
sparams.mirostat_tau = std::stof(argv[i]);
|
||||
} else if (arg == "--cfg-negative-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_negative_prompt = argv[i];
|
||||
sparams.cfg_negative_prompt = argv[i];
|
||||
} else if (arg == "--cfg-negative-prompt-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -294,16 +295,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
||||
if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') {
|
||||
params.cfg_negative_prompt.pop_back();
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
|
||||
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
|
||||
sparams.cfg_negative_prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "--cfg-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_scale = std::stof(argv[i]);
|
||||
sparams.cfg_scale = std::stof(argv[i]);
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -383,6 +384,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
} else if (arg == "--mmproj") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mmproj = argv[i];
|
||||
} else if (arg == "--image") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.image = argv[i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "--embedding") {
|
||||
@ -512,7 +525,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
} else if (arg == "--ignore-eos") {
|
||||
params.ignore_eos = true;
|
||||
} else if (arg == "--no-penalize-nl") {
|
||||
params.penalize_nl = false;
|
||||
sparams.penalize_nl = false;
|
||||
} else if (arg == "-l" || arg == "--logit-bias") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -524,7 +537,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
std::string value_str;
|
||||
try {
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
|
||||
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
} else {
|
||||
throw std::exception();
|
||||
}
|
||||
@ -627,6 +640,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
const llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
@ -659,19 +674,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
|
||||
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
|
||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
|
||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
|
||||
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
|
||||
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n);
|
||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty);
|
||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty);
|
||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty);
|
||||
printf(" --mirostat N use Mirostat sampling.\n");
|
||||
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
|
||||
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
|
||||
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
|
||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
|
||||
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
|
||||
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
|
||||
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
|
||||
printf(" modifies the likelihood of token appearing in the completion,\n");
|
||||
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||
@ -682,7 +697,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" negative prompt to use for guidance. (default: empty)\n");
|
||||
printf(" --cfg-negative-prompt-file FNAME\n");
|
||||
printf(" negative prompt file to use for guidance. (default: empty)\n");
|
||||
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
|
||||
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
|
||||
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
|
||||
@ -690,7 +705,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
@ -700,6 +715,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
|
||||
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
|
||||
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
|
||||
if (llama_mlock_supported()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
@ -840,7 +857,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
}
|
||||
|
||||
if (params.ignore_eos) {
|
||||
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
{
|
||||
@ -932,127 +949,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
@ -1204,6 +1100,8 @@ std::string get_sortable_timestamp() {
|
||||
|
||||
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||
const llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
|
||||
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
|
||||
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||
@ -1250,21 +1148,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
|
||||
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
|
||||
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
|
||||
dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
|
||||
fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
|
||||
dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
|
||||
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
|
||||
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
|
||||
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
|
||||
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
||||
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
||||
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
|
||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty);
|
||||
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||
|
||||
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
|
||||
|
||||
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
|
||||
@ -1277,7 +1175,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
|
||||
|
||||
fprintf(stream, "logit_bias:\n");
|
||||
for (std::pair<llama_token, float> lb : params.logit_bias) {
|
||||
for (std::pair<llama_token, float> lb : sparams.logit_bias) {
|
||||
if (ignore_eos && lb.first == logit_bias_eos->first) {
|
||||
continue;
|
||||
}
|
||||
@ -1301,30 +1199,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
|
||||
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
|
||||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty);
|
||||
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
|
||||
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
||||
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
||||
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
||||
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
|
||||
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
|
||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);
|
||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty);
|
||||
|
||||
fprintf(stream, "reverse_prompt:\n");
|
||||
for (std::string ap : params.antiprompt) {
|
||||
@ -1342,15 +1240,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
|
||||
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
|
||||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", params.temp);
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
}
|
||||
|
@ -4,6 +4,8 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "sampling.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
@ -49,31 +51,12 @@ struct gpt_params {
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sampling_params;
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
@ -115,13 +98,16 @@ struct gpt_params {
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@ -180,36 +166,6 @@ std::string llama_detokenize_bpe(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - params: sampling parameters
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - grammar: grammar to use for sampling, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx = 0);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
166
common/sampling.cpp
Normal file
166
common/sampling.cpp
Normal file
@ -0,0 +1,166 @@
|
||||
#include "sampling.h"
|
||||
|
||||
llama_sampling_context::~llama_sampling_context() {
|
||||
for (auto & it : sequence_contexts) {
|
||||
if (it.second.grammar != NULL) {
|
||||
llama_grammar_free(it.second.grammar);
|
||||
it.second.grammar = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar) {
|
||||
llama_sampling_context result;
|
||||
|
||||
result.params = params.sampling_params;
|
||||
result.grammar = grammar;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Note: Creates the context if it doesn't exist, so this always return something.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it != ctx_sampling.sequence_contexts.end()) {
|
||||
return it->second;
|
||||
}
|
||||
llama_sampler_sequence_context new_ctx = {
|
||||
2.0f * ctx_sampling.params.mirostat_tau,
|
||||
ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
|
||||
};
|
||||
return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
|
||||
}
|
||||
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it == ctx_sampling.sequence_contexts.end()) return false;
|
||||
if (it->second.grammar != NULL) {
|
||||
llama_grammar_free(it->second.grammar);
|
||||
it->second.grammar = NULL;
|
||||
}
|
||||
ctx_sampling.sequence_contexts.erase(it);
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx,
|
||||
llama_seq_id seq) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling.params;
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
(void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
108
common/sampling.h
Normal file
108
common/sampling.h
Normal file
@ -0,0 +1,108 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
} llama_sampling_params;
|
||||
|
||||
// per-sequence sampler context
|
||||
typedef struct llama_sampler_sequence_context {
|
||||
float mirostat_mu; // mirostat sampler state
|
||||
llama_grammar * grammar;
|
||||
} llama_sampler_sequence_context;
|
||||
|
||||
// general sampler context
|
||||
typedef struct llama_sampling_context {
|
||||
~llama_sampling_context();
|
||||
|
||||
// parameters that will be used for sampling and when creating
|
||||
// new llama_sampler_sequence_context instances
|
||||
llama_sampling_params params;
|
||||
|
||||
// map of sequence ids to sampler contexts
|
||||
std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
|
||||
|
||||
// when non-NULL, new instances of llama_sampler_sequence_context
|
||||
// will get a copy of the grammar here
|
||||
// note: only the pointer is stored here, it is not a copy of
|
||||
// the grammar and shouldn't be freed
|
||||
llama_grammar * grammar;
|
||||
} llama_sampling_context;
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar = NULL);
|
||||
|
||||
// Fetches the sampler context for the specified sequence id (defaults to 0).
|
||||
// If the context for that sequence id doesn't already exist, it will be created with
|
||||
// default values based on the parameters in the ctx_sampling argument.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
|
||||
// Reset the sampler context for the supplied sequence id (defaults to 0).
|
||||
// This is necessary to reuse a sequence id or free memory used by sequences
|
||||
// that are no longer required.
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_context_reset when a sequence ends
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
// - seq: sequence id to associate sampler state with
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx = 0,
|
||||
llama_seq_id seq = 0);
|
8396
common/stb_image.h
Normal file
8396
common/stb_image.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -49,7 +49,7 @@ According to the BLIS documentation, we could set the following
|
||||
environment variables to modify the behavior of openmp:
|
||||
|
||||
```bash
|
||||
export GOMP_GPU_AFFINITY="0-19"
|
||||
export GOMP_CPU_AFFINITY="0-19"
|
||||
export BLIS_NUM_THREADS=14
|
||||
```
|
||||
|
||||
|
@ -25,9 +25,11 @@ else()
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(beam-search)
|
||||
if (LLAMA_METAL)
|
||||
|
5
examples/batched-bench/CMakeLists.txt
Normal file
5
examples/batched-bench/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET batched-bench)
|
||||
add_executable(${TARGET} batched-bench.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
51
examples/batched-bench/README.md
Normal file
51
examples/batched-bench/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
# llama.cpp/example/batched-bench
|
||||
|
||||
Benchmark the batched decoding performance of `llama.cpp`
|
||||
|
||||
## Usage
|
||||
|
||||
There are 2 modes of operation:
|
||||
|
||||
- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`)
|
||||
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
|
||||
|
||||
```bash
|
||||
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
|
||||
|
||||
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99
|
||||
|
||||
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99
|
||||
|
||||
# custom set of batches
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32
|
||||
```
|
||||
|
||||
## Sample results
|
||||
|
||||
- `PP` - prompt tokens per batch
|
||||
- `TG` - generated tokens per batch
|
||||
- `B` - number of batches
|
||||
- `N_KV` - required KV cache size
|
||||
- `T_PP` - prompt processing time (i.e. time to first token)
|
||||
- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`)
|
||||
- `T_TG` - time to generate all batches
|
||||
- `S_TG` - text generation speed (`(B*TG)/T_TG`)
|
||||
- `T` - total time
|
||||
- `S` - total speed (i.e. all tokens / total time)
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 |
|
||||
| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 |
|
||||
| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 |
|
||||
| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 |
|
||||
| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 |
|
||||
| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 |
|
||||
| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 |
|
||||
| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 |
|
||||
| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 |
|
||||
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
|
||||
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
|
||||
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |
|
251
examples/batched-bench/batched-bench.cpp
Normal file
251
examples/batched-bench/batched-bench.cpp
Normal file
@ -0,0 +1,251 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// mutates the input string
|
||||
static std::vector<int> parse_list(char * p) {
|
||||
std::vector<int> ret;
|
||||
|
||||
char * q = p;
|
||||
|
||||
while (*p) {
|
||||
if (*p == ',') {
|
||||
*p = '\0';
|
||||
ret.push_back(std::atoi(q));
|
||||
q = p + 1;
|
||||
}
|
||||
|
||||
++p;
|
||||
}
|
||||
|
||||
ret.push_back(std::atoi(q));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_kv_max = 2048;
|
||||
int is_pp_shared = 0;
|
||||
int n_gpu_layers = 0;
|
||||
int mmq = 0;
|
||||
|
||||
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
|
||||
std::vector<int> n_tg = { 128, 256, };
|
||||
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
|
||||
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
n_kv_max = std::atoi(argv[2]);
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
is_pp_shared = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (argc >= 5) {
|
||||
n_gpu_layers = std::atoi(argv[4]);
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
mmq = std::atoi(argv[5]);
|
||||
}
|
||||
|
||||
if (argc >= 7) {
|
||||
n_pp = parse_list(argv[6]);
|
||||
}
|
||||
|
||||
if (argc >= 8) {
|
||||
n_tg = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
if (argc >= 9) {
|
||||
n_pl = parse_list(argv[8]);
|
||||
}
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_max;
|
||||
ctx_params.n_batch = 512;
|
||||
ctx_params.mul_mat_q = mmq;
|
||||
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0);
|
||||
|
||||
// decode in batches of ctx_params.n_batch tokens
|
||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
};
|
||||
|
||||
// warm up
|
||||
{
|
||||
batch.n_tokens = 16;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
|
||||
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
|
||||
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
|
||||
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
|
||||
const int pp = n_pp[i_pp];
|
||||
const int tg = n_tg[i_tg];
|
||||
const int pl = n_pl[i_pl];
|
||||
|
||||
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
|
||||
|
||||
if (n_ctx_req > n_kv_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
batch.n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (is_pp_shared) {
|
||||
for (int32_t i = 1; i < pl; ++i) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_pp_end = ggml_time_us();
|
||||
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
batch.n_tokens = pl;
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
batch.token[j] = 0;
|
||||
batch.pos[j] = pp + i;
|
||||
batch.seq_id[j] = j;
|
||||
batch.logits[j] = true;
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
const int32_t n_kv = n_ctx_req;
|
||||
|
||||
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
|
||||
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
|
||||
const float t = t_pp + t_tg;
|
||||
|
||||
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
|
||||
const float speed_tg = pl*tg / t_tg;
|
||||
const float speed = n_kv / t;
|
||||
|
||||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
@ -128,21 +128,22 @@ bool eval_string(struct MyModel * mymodel,const char* str){
|
||||
llama_token sampling_id(struct MyModel* mymodel) {
|
||||
llama_context* ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const float temp = sparams.temp;
|
||||
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
|
||||
const float top_p = sparams.top_p;
|
||||
const float tfs_z = sparams.tfs_z;
|
||||
const float typical_p = sparams.typical_p;
|
||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
// const float repeat_penalty = params.repeat_penalty;
|
||||
// const float alpha_presence = params.presence_penalty;
|
||||
// const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const int mirostat = sparams.mirostat;
|
||||
const float mirostat_tau = sparams.mirostat_tau;
|
||||
const float mirostat_eta = sparams.mirostat_eta;
|
||||
// const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
@ -151,7 +152,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
|
@ -104,6 +104,7 @@ static void sigint_handler(int signo) {
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
@ -206,7 +207,7 @@ int main(int argc, char ** argv) {
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
@ -269,9 +270,9 @@ int main(int argc, char ** argv) {
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
@ -312,7 +313,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
@ -358,7 +359,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
@ -376,8 +377,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
@ -434,6 +435,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
@ -552,7 +554,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
|
20
examples/llava/CMakeLists.txt
Normal file
20
examples/llava/CMakeLists.txt
Normal file
@ -0,0 +1,20 @@
|
||||
set(TARGET clip)
|
||||
add_library(${TARGET} clip.cpp clip.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if (NOT MSVC)
|
||||
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET llava)
|
||||
add_executable(${TARGET} llava.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
57
examples/llava/README.md
Normal file
57
examples/llava/README.md
Normal file
@ -0,0 +1,57 @@
|
||||
# LLaVA
|
||||
|
||||
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
|
||||
|
||||
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
|
||||
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
|
||||
models are available.
|
||||
|
||||
After API is confirmed, more models will be supported / uploaded.
|
||||
|
||||
## Usage
|
||||
Build with cmake or run `make llava` to build it.
|
||||
|
||||
After building, run: `./llava` to see the usage. For example:
|
||||
|
||||
```sh
|
||||
./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
||||
```
|
||||
|
||||
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
||||
|
||||
## Model conversion
|
||||
|
||||
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
|
||||
|
||||
```sh
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
||||
|
||||
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
```
|
||||
|
||||
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./convert.py ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support server mode.
|
||||
- [ ] Support non-CPU backend for the image encoding part.
|
||||
- [ ] Support different sampling methods.
|
||||
- [ ] Support more model variants.
|
1062
examples/llava/clip.cpp
Normal file
1062
examples/llava/clip.cpp
Normal file
File diff suppressed because it is too large
Load Diff
73
examples/llava/clip.h
Normal file
73
examples/llava/clip.h
Normal file
@ -0,0 +1,73 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_vision_hparams {
|
||||
int32_t image_size;
|
||||
int32_t patch_size;
|
||||
int32_t hidden_size;
|
||||
int32_t n_intermediate;
|
||||
int32_t projection_dim;
|
||||
int32_t n_head;
|
||||
int32_t n_layer;
|
||||
float eps;
|
||||
};
|
||||
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
|
||||
|
||||
void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
size_t clip_embd_nbytes(struct clip_ctx * ctx);
|
||||
int clip_n_patches(struct clip_ctx * ctx);
|
||||
int clip_n_mmproj_embd(struct clip_ctx * ctx);
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
uint8_t * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
float * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
struct clip_image_f32 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_u8 * make_clip_image_u8();
|
||||
struct clip_image_f32 * make_clip_image_f32();
|
||||
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
|
||||
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
|
||||
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
|
||||
float * vec);
|
||||
|
||||
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // CLIP_H
|
250
examples/llava/convert-image-encoder-to-gguf.py
Normal file
250
examples/llava/convert-image-encoder-to-gguf.py
Normal file
@ -0,0 +1,250 @@
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import CLIPModel, CLIPProcessor
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
|
||||
if name in (
|
||||
"logit_scale",
|
||||
"text_model.embeddings.position_ids",
|
||||
"vision_model.embeddings.position_ids",
|
||||
):
|
||||
return True
|
||||
|
||||
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
|
||||
return True
|
||||
|
||||
if name.startswith("v") and not has_vision:
|
||||
return True
|
||||
|
||||
if name.startswith("t") and not has_text:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
|
||||
if "mm_projector" in name:
|
||||
return name.replace("model.mm_projector", "mm")
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
|
||||
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
|
||||
args = ap.parse_args()
|
||||
|
||||
|
||||
if args.text_only and args.vision_only:
|
||||
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||
exit(1)
|
||||
|
||||
if args.use_f32:
|
||||
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
tokens = [key for key in vocab]
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
v_hparams = config["vision_config"]
|
||||
t_hparams = config["text_config"]
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
|
||||
model = CLIPModel.from_pretrained(dir_model)
|
||||
processor = CLIPProcessor.from_pretrained(dir_model)
|
||||
|
||||
fname_middle = None
|
||||
has_text_encoder = True
|
||||
has_vision_encoder = True
|
||||
has_llava_projector = False
|
||||
if args.text_only:
|
||||
fname_middle = "text-"
|
||||
has_vision_encoder = False
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
elif args.llava_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_llava_projector = True
|
||||
else:
|
||||
fname_middle = ""
|
||||
|
||||
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
fout.add_bool("clip.has_llava_projector", has_llava_projector)
|
||||
fout.add_file_type(ftype)
|
||||
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
|
||||
fout.add_name(model_name)
|
||||
if args.text_only:
|
||||
fout.add_description("text-only CLIP model")
|
||||
elif args.vision_only and not has_llava_projector:
|
||||
fout.add_description("vision-only CLIP model")
|
||||
elif has_llava_projector:
|
||||
fout.add_description("image encoder for LLaVA")
|
||||
else:
|
||||
fout.add_description("two-tower CLIP model")
|
||||
|
||||
if has_text_encoder:
|
||||
# text_model hparams
|
||||
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||
fout.add_token_list(tokens)
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
|
||||
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
|
||||
fout.add_array("clip.vision.image_mean", image_mean)
|
||||
fout.add_array("clip.vision.image_std", image_std)
|
||||
|
||||
use_gelu = v_hparams["hidden_act"] == "gelu"
|
||||
fout.add_bool("clip.use_gelu", use_gelu)
|
||||
|
||||
|
||||
if has_llava_projector:
|
||||
model.vision_model.encoder.layers.pop(-1)
|
||||
projector = torch.load(args.llava_projector)
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
if data.ndim == 2:
|
||||
data = data.squeeze().numpy().astype(np.float16)
|
||||
else:
|
||||
data = data.squeeze().numpy().astype(np.float32)
|
||||
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
print("Projector tensors added\n")
|
||||
|
||||
state_dict = model.state_dict()
|
||||
for name, data in state_dict.items():
|
||||
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
|
||||
# we don't need this
|
||||
print(f"skipping parameter: {name}")
|
||||
continue
|
||||
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
30
examples/llava/llava-surgery.py
Normal file
30
examples/llava/llava-surgery.py
Normal file
@ -0,0 +1,30 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import torch
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
|
||||
checkpoint = torch.load(path)
|
||||
|
||||
# get a list of mm tensor names
|
||||
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
|
||||
|
||||
# store these tensors in a new dictionary and torch.save them
|
||||
projector = {name: checkpoint[name] for name in mm_tensors}
|
||||
torch.save(projector, f"{args.model}/llava.projector")
|
||||
|
||||
# remove these tensors from the checkpoint and save it again
|
||||
for name in mm_tensors:
|
||||
del checkpoint[name]
|
||||
|
||||
torch.save(checkpoint, path)
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
145
examples/llava/llava-utils.h
Normal file
145
examples/llava/llava-utils.h
Normal file
@ -0,0 +1,145 @@
|
||||
#pragma once
|
||||
|
||||
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = N - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||
int N = (int) tokens.size();
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||
}
|
||||
|
||||
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: use common/sampling.h
|
||||
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
||||
// out of user input, sample next token
|
||||
const float temp = params.sampling_params.temp;
|
||||
const int32_t top_k = params.sampling_params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.sampling_params.top_k;
|
||||
const float top_p = params.sampling_params.top_p;
|
||||
const float tfs_z = params.sampling_params.tfs_z;
|
||||
const float typical_p = params.sampling_params.typical_p;
|
||||
// const int32_t repeat_last_n = params.sampling_params.repeat_last_n < 0 ? n_ctx : params.sampling_params.repeat_last_n;
|
||||
// const float repeat_penalty = params.sampling_params.repeat_penalty;
|
||||
// const float alpha_presence = params.sampling_params.presence_penalty;
|
||||
// const float alpha_frequency = params.sampling_params.frequency_penalty;
|
||||
const int mirostat = params.sampling_params.mirostat;
|
||||
const float mirostat_tau = params.sampling_params.mirostat_tau;
|
||||
const float mirostat_eta = params.sampling_params.mirostat_eta;
|
||||
// const bool penalize_nl = params.sampling_params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.sampling_params.logit_bias.begin(); it != params.sampling_params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx_llama, &candidates_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
|
||||
int id = sample_id(ctx_llama, params);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(ctx_llama)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
}
|
156
examples/llava/llava.cpp
Normal file
156
examples/llava/llava.cpp
Normal file
@ -0,0 +1,156 @@
|
||||
#include "clip.h"
|
||||
#include "llava-utils.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.mmproj.empty() || params.image.empty()) {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * clip_path = params.mmproj.c_str();
|
||||
const char * img_path = params.image.c_str();
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
// load and preprocess the image
|
||||
clip_image_u8 img;
|
||||
clip_image_f32 img_res;
|
||||
|
||||
if (!clip_image_load_from_file(img_path, &img)) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
|
||||
|
||||
clip_free(ctx_clip);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
|
||||
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
|
||||
|
||||
clip_free(ctx_clip);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int n_img_pos = clip_n_patches(ctx_clip);
|
||||
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||||
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int64_t t_img_enc_start_us = ggml_time_us();
|
||||
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
|
||||
// we get the embeddings, free up the memory required for CLIP
|
||||
clip_free(ctx_clip);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
if (n_img_embd != n_llama_embd) {
|
||||
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
|
||||
|
||||
llama_free(ctx_llama);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
free(image_embd);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
|
||||
// GG: are we sure that the should be a trailing whitespace at the end of this string?
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER: ", params.n_batch, &n_past);
|
||||
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
||||
eval_string(ctx_llama, params.prompt.c_str(), params.n_batch, &n_past);
|
||||
eval_string(ctx_llama, "\nASSISTANT:", params.n_batch, &n_past);
|
||||
|
||||
// generate the response
|
||||
|
||||
printf("\n");
|
||||
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(ctx_llama, params, &n_past);
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
|
||||
printf("%s", tmp);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
|
||||
{
|
||||
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
|
||||
}
|
||||
|
||||
llama_print_timings(ctx_llama);
|
||||
|
||||
llama_free(ctx_llama);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
free(image_embd);
|
||||
|
||||
return 0;
|
||||
}
|
@ -109,6 +109,7 @@ int main(int argc, char ** argv) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("main", "log"));
|
||||
@ -179,7 +180,7 @@ int main(int argc, char ** argv) {
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
@ -257,9 +258,9 @@ int main(int argc, char ** argv) {
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
@ -296,6 +297,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
}
|
||||
|
||||
// remove any "future" tokens that we might have inherited from the previous session
|
||||
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
|
||||
}
|
||||
|
||||
LOGLN(
|
||||
@ -343,7 +347,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
@ -395,7 +399,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
@ -413,8 +417,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
@ -469,6 +473,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
@ -543,9 +548,6 @@ int main(int argc, char ** argv) {
|
||||
if (i > 0) {
|
||||
embd.erase(embd.begin(), embd.begin() + i);
|
||||
}
|
||||
|
||||
// remove any "future" tokens that we might have inherited from the session from the KV cache
|
||||
llama_kv_cache_tokens_rm(ctx, n_past, -1);
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
@ -625,7 +627,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
|
@ -125,6 +125,8 @@ int main(int argc, char ** argv) {
|
||||
params.logits_all = true;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
@ -339,7 +341,7 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i);
|
||||
const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@ -384,7 +386,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_total_prompt += client.n_prompt;
|
||||
n_total_gen += client.n_decoded;
|
||||
|
||||
llama_sampling_context_reset(ctx_sampling, client.seq_id);
|
||||
client.seq_id = -1;
|
||||
}
|
||||
|
||||
|
@ -8,9 +8,10 @@
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
params.seed = 42;
|
||||
params.n_threads = 4;
|
||||
params.repeat_last_n = 64;
|
||||
sparams.repeat_last_n = 64;
|
||||
params.prompt = "The quick brown fox";
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
@ -24,7 +25,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
auto n_past = 0;
|
||||
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
||||
auto last_n_tokens_data = std::vector<llama_token>(sparams.repeat_last_n, 0);
|
||||
|
||||
// init
|
||||
llama_model * model;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -136,6 +136,11 @@
|
||||
display: block;
|
||||
}
|
||||
|
||||
fieldset label.slim {
|
||||
margin: 0 0.5em;
|
||||
display: inline;
|
||||
}
|
||||
|
||||
header, footer {
|
||||
text-align: center;
|
||||
}
|
||||
@ -145,6 +150,14 @@
|
||||
color: #888;
|
||||
}
|
||||
|
||||
.mode-chat textarea[name=prompt] {
|
||||
height: 4.5em;
|
||||
}
|
||||
|
||||
.mode-completion textarea[name=prompt] {
|
||||
height: 10em;
|
||||
}
|
||||
|
||||
|
||||
@keyframes loading-bg-wipe {
|
||||
0% {
|
||||
@ -187,7 +200,7 @@
|
||||
template: "{{prompt}}\n\n{{history}}\n{{char}}:",
|
||||
historyTemplate: "{{name}}: {{message}}",
|
||||
transcript: [],
|
||||
type: "chat",
|
||||
type: "chat", // "chat" | "completion"
|
||||
char: "Llama",
|
||||
user: "User",
|
||||
})
|
||||
@ -365,13 +378,44 @@
|
||||
return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key]));
|
||||
}
|
||||
|
||||
async function runLlama(prompt, llamaParams, char) {
|
||||
const currentMessages = [];
|
||||
const history = session.value.transcript;
|
||||
if (controller.value) {
|
||||
throw new Error("already running");
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
for await (const chunk of llama(prompt, llamaParams, {controller: controller.value})) {
|
||||
const data = chunk.data;
|
||||
|
||||
if (data.stop) {
|
||||
while (
|
||||
currentMessages.length > 0 &&
|
||||
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
|
||||
) {
|
||||
currentMessages.pop();
|
||||
}
|
||||
transcriptUpdate([...history, [char, currentMessages]])
|
||||
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
|
||||
} else {
|
||||
currentMessages.push(data);
|
||||
transcriptUpdate([...history, [char, currentMessages]])
|
||||
}
|
||||
|
||||
if (data.timings) {
|
||||
llamaStats.value = data.timings;
|
||||
}
|
||||
}
|
||||
|
||||
controller.value = null;
|
||||
}
|
||||
|
||||
// send message to server
|
||||
const chat = async (msg) => {
|
||||
if (controller.value) {
|
||||
console.log('already running...');
|
||||
return;
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
|
||||
transcriptUpdate([...session.value.transcript, ["{{user}}", msg]])
|
||||
|
||||
@ -391,55 +435,41 @@
|
||||
).join("\n"),
|
||||
});
|
||||
|
||||
const currentMessages = [];
|
||||
const history = session.value.transcript
|
||||
|
||||
const llamaParams = {
|
||||
await runLlama(prompt, {
|
||||
...params.value,
|
||||
stop: ["</s>", template("{{char}}:"), template("{{user}}:")],
|
||||
}, "{{char}}");
|
||||
}
|
||||
|
||||
const runCompletion = async () => {
|
||||
if (controller.value) {
|
||||
console.log('already running...');
|
||||
return;
|
||||
}
|
||||
const {prompt} = session.value;
|
||||
transcriptUpdate([...session.value.transcript, ["", prompt]]);
|
||||
await runLlama(prompt, {
|
||||
...params.value,
|
||||
stop: [],
|
||||
}, "");
|
||||
}
|
||||
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
|
||||
const data = chunk.data;
|
||||
|
||||
if (data.stop) {
|
||||
while (
|
||||
currentMessages.length > 0 &&
|
||||
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
|
||||
) {
|
||||
currentMessages.pop();
|
||||
}
|
||||
transcriptUpdate([...history, ["{{char}}", currentMessages]])
|
||||
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
|
||||
} else {
|
||||
currentMessages.push(data);
|
||||
transcriptUpdate([...history, ["{{char}}", currentMessages]])
|
||||
}
|
||||
|
||||
if (data.timings) {
|
||||
llamaStats.value = data.timings;
|
||||
}
|
||||
const stop = (e) => {
|
||||
e.preventDefault();
|
||||
if (controller.value) {
|
||||
controller.value.abort();
|
||||
controller.value = null;
|
||||
}
|
||||
}
|
||||
|
||||
controller.value = null;
|
||||
const reset = (e) => {
|
||||
stop(e);
|
||||
transcriptUpdate([]);
|
||||
}
|
||||
|
||||
function MessageInput() {
|
||||
const message = useSignal("")
|
||||
|
||||
const stop = (e) => {
|
||||
e.preventDefault();
|
||||
if (controller.value) {
|
||||
controller.value.abort();
|
||||
controller.value = null;
|
||||
}
|
||||
}
|
||||
|
||||
const reset = (e) => {
|
||||
stop(e);
|
||||
transcriptUpdate([]);
|
||||
}
|
||||
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
chat(message.value);
|
||||
@ -474,6 +504,19 @@
|
||||
`
|
||||
}
|
||||
|
||||
function CompletionControls() {
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
runCompletion();
|
||||
}
|
||||
return html`
|
||||
<div>
|
||||
<button onclick=${submit} type="button" disabled=${generating.value}>Start</button>
|
||||
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
</div>`;
|
||||
}
|
||||
|
||||
const ChatLog = (props) => {
|
||||
const messages = session.value.transcript;
|
||||
const container = useRef(null)
|
||||
@ -497,7 +540,11 @@
|
||||
data;
|
||||
message = html`<${Markdownish} text=${template(text)} />`
|
||||
}
|
||||
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
|
||||
if(user) {
|
||||
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
|
||||
} else {
|
||||
return html`<p key=${index}>${message}</p>`
|
||||
}
|
||||
};
|
||||
|
||||
return html`
|
||||
@ -574,18 +621,31 @@
|
||||
userTemplateAutosave()
|
||||
}, [session.value, params.value])
|
||||
|
||||
return html`
|
||||
<form>
|
||||
<fieldset>
|
||||
<${UserTemplateResetButton}/>
|
||||
</fieldset>
|
||||
const GrammarControl = () => (
|
||||
html`
|
||||
<div>
|
||||
<label for="template">Grammar</label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
</div>
|
||||
`
|
||||
);
|
||||
|
||||
<fieldset>
|
||||
<div>
|
||||
<label for="prompt">Prompt</label>
|
||||
<textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
|
||||
</div>
|
||||
</fieldset>
|
||||
const PromptControlFieldSet = () => (
|
||||
html`
|
||||
<fieldset>
|
||||
<div>
|
||||
<label htmlFor="prompt">Prompt</label>
|
||||
<textarea type="text" name="prompt" value="${session.value.prompt}" oninput=${updateSession}/>
|
||||
</div>
|
||||
</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
const ChatConfigForm = () => (
|
||||
html`
|
||||
${PromptControlFieldSet()}
|
||||
|
||||
<fieldset class="two">
|
||||
<div>
|
||||
@ -609,15 +669,30 @@
|
||||
<label for="template">Chat history template</label>
|
||||
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
||||
</div>
|
||||
${GrammarControl()}
|
||||
</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
const CompletionConfigForm = () => (
|
||||
html`
|
||||
${PromptControlFieldSet()}
|
||||
<fieldset>${GrammarControl()}</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
return html`
|
||||
<form>
|
||||
<fieldset class="two">
|
||||
<${UserTemplateResetButton}/>
|
||||
<div>
|
||||
<label for="template">Grammar</label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
<label class="slim"><input type="radio" name="type" value="chat" checked=${session.value.type === "chat"} oninput=${updateSession} /> Chat</label>
|
||||
<label class="slim"><input type="radio" name="type" value="completion" checked=${session.value.type === "completion"} oninput=${updateSession} /> Completion</label>
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
${session.value.type === 'chat' ? ChatConfigForm() : CompletionConfigForm()}
|
||||
|
||||
<fieldset class="two">
|
||||
${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})}
|
||||
${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})}
|
||||
@ -851,7 +926,7 @@
|
||||
function App(props) {
|
||||
|
||||
return html`
|
||||
<div>
|
||||
<div class="mode-${session.value.type}">
|
||||
<header>
|
||||
<h1>llama.cpp</h1>
|
||||
</header>
|
||||
@ -861,7 +936,7 @@
|
||||
</main>
|
||||
|
||||
<section id="write">
|
||||
<${MessageInput} />
|
||||
<${session.value.type === 'chat' ? MessageInput : CompletionControls} />
|
||||
</section>
|
||||
|
||||
<footer>
|
||||
|
@ -380,6 +380,7 @@ struct llama_server_context
|
||||
std::vector<llama_token_data> candidates;
|
||||
bool all_slots_are_idle = false;
|
||||
gpt_params params;
|
||||
llama_sampling_context ctx_sampling;
|
||||
int n_ctx;
|
||||
int n_vocab;
|
||||
bool clean_kv_cache = true;
|
||||
@ -402,11 +403,29 @@ struct llama_server_context
|
||||
llama_free_model(model);
|
||||
model = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
for(auto &slot : slots) {
|
||||
if(slot.grammar) {
|
||||
llama_grammar_free(slot.grammar);
|
||||
}
|
||||
void rewind()
|
||||
{
|
||||
params.antiprompt.clear();
|
||||
params.grammar.clear();
|
||||
num_prompt_tokens = 0;
|
||||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(n_ctx);
|
||||
generated_token_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
stopped_limit = false;
|
||||
stopping_word = "";
|
||||
multibyte_pending = 0;
|
||||
n_remain = 0;
|
||||
n_past = 0;
|
||||
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
@ -491,59 +510,28 @@ struct llama_server_context
|
||||
return prompt_tokens;
|
||||
}
|
||||
|
||||
void processPrompt() {
|
||||
|
||||
|
||||
//params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
// if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
// {
|
||||
// const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
// std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
// const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
// new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
// std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
// LOG_VERBOSE("input truncated", {
|
||||
// {"n_ctx", n_ctx},
|
||||
// {"n_keep", params.n_keep},
|
||||
// {"n_left", n_left},
|
||||
// {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
// });
|
||||
|
||||
// truncated = true;
|
||||
// prompt_tokens = new_tokens;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// const size_t ps = num_prompt_tokens;
|
||||
// std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
// std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
// }
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
}
|
||||
|
||||
|
||||
llama_client_slot* getSlot(int id) {
|
||||
for (llama_client_slot & slot : slots)
|
||||
{
|
||||
if ((id == -1 && slot.available()) || slot.id == id)
|
||||
{
|
||||
return &slot;
|
||||
bool loadGrammar()
|
||||
{
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
bool launchSlot(llama_client_slot* &slot) {
|
||||
if(!slot->loadGrammar()) {
|
||||
return false;
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
all_slots_are_idle = false;
|
||||
slot->command = LOAD_PROMPT;
|
||||
LOG_TEE("slot %i is processing\n", slot->id);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -604,15 +592,15 @@ struct llama_server_context
|
||||
// std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
// }
|
||||
|
||||
// // compare the evaluated prompt with the new prompt
|
||||
// n_past = common_part(embd, prompt_tokens);
|
||||
// embd = prompt_tokens;
|
||||
// if (n_past == num_prompt_tokens)
|
||||
// {
|
||||
// // we have to evaluate at least 1 token to generate logits.
|
||||
// printf("we have to evaluate at least 1 token to generate logits\n");
|
||||
// n_past--;
|
||||
// }
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// LOG_VERBOSE("prompt ingested", {
|
||||
// {"n_past", n_past},
|
||||
@ -629,77 +617,168 @@ struct llama_server_context
|
||||
{
|
||||
llama_kv_cache_seq_rm(ctx, i, 0, -1);
|
||||
}
|
||||
clean_kv_cache = false;
|
||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
{
|
||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
});
|
||||
|
||||
truncated = true;
|
||||
prompt_tokens = new_tokens;
|
||||
}
|
||||
else
|
||||
{
|
||||
const size_t ps = num_prompt_tokens;
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||
}
|
||||
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
n_past--;
|
||||
}
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", n_past},
|
||||
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
|
||||
has_next_token = true;
|
||||
}
|
||||
|
||||
void updateSystemPrompt() {
|
||||
tokens_system = ::llama_tokenize(ctx, system_prompt, true);
|
||||
n_tokens_system = tokens_system.size();
|
||||
|
||||
batch.n_tokens = n_tokens_system;
|
||||
|
||||
cleanKVCache();
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; ++i)
|
||||
{
|
||||
batch.token[i] = tokens_system[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i < params.n_parallel; ++i)
|
||||
{
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
|
||||
}
|
||||
|
||||
LOG_TEE("system prompt updated\n");
|
||||
update_system_prompt = false;
|
||||
void beginCompletion()
|
||||
{
|
||||
// number of tokens to keep when resetting context
|
||||
n_remain = params.n_predict;
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
}
|
||||
|
||||
void notifySystemPromptChanged() {
|
||||
// release all slots
|
||||
for (llama_client_slot &slot : slots)
|
||||
completion_token_output nextToken()
|
||||
{
|
||||
completion_token_output result;
|
||||
result.tok = -1;
|
||||
|
||||
if (embd.size() >= (size_t)n_ctx)
|
||||
{
|
||||
slot.release();
|
||||
}
|
||||
waitAllAreIdle();
|
||||
all_slots_are_idle = true;
|
||||
// wait until system prompt load
|
||||
update_system_prompt = true;
|
||||
while(update_system_prompt) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
||||
}
|
||||
// system prompt loaded, continue
|
||||
}
|
||||
// Shift context
|
||||
|
||||
void processSystemPromptData(json sys_props) {
|
||||
system_prompt = sys_props.value("system_prompt", "");
|
||||
user_name = sys_props.value("anti_prompt", "");
|
||||
assistant_name = sys_props.value("assistant_name", "");
|
||||
notifySystemPromptChanged();
|
||||
}
|
||||
const int n_left = n_past - params.n_keep - 1;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
void waitAllAreIdle() {
|
||||
bool wait = true;
|
||||
while(wait) {
|
||||
wait = false;
|
||||
for (auto &slot : slots)
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||
|
||||
for (size_t i = params.n_keep + 1 + n_discard; i < embd.size(); i++)
|
||||
{
|
||||
if (!slot.available())
|
||||
{
|
||||
wait = true;
|
||||
break;
|
||||
}
|
||||
embd[i - n_discard] = embd[i];
|
||||
}
|
||||
embd.resize(embd.size() - n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
truncated = true;
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
});
|
||||
}
|
||||
|
||||
bool tg = true;
|
||||
while (n_past < embd.size())
|
||||
{
|
||||
int n_eval = (int)embd.size() - n_past;
|
||||
tg = n_eval == 1;
|
||||
if (n_eval > params.n_batch)
|
||||
{
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||
{
|
||||
LOG_ERROR("failed to eval", {
|
||||
{"n_eval", n_eval},
|
||||
{"n_past", n_past},
|
||||
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
has_next_token = false;
|
||||
return result;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
|
||||
if (params.n_predict == 0)
|
||||
{
|
||||
has_next_token = false;
|
||||
result.tok = llama_token_eos(ctx);
|
||||
return result;
|
||||
}
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
|
||||
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int32_t n_probs = params.n_probs;
|
||||
if (params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||
{
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(result.tok);
|
||||
if (tg) {
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(result.tok);
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
|
||||
{
|
||||
// stopping_word = llama_token_to_piece(ctx, embd.back());
|
||||
has_next_token = false;
|
||||
stopped_eos = true;
|
||||
LOG_VERBOSE("eos token found", {});
|
||||
return result;
|
||||
}
|
||||
|
||||
has_next_token = params.n_predict == -1 || n_remain != 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
size_t findStoppingStrings(const size_t last_token_size,
|
||||
@ -754,7 +833,7 @@ struct llama_server_context
|
||||
params.n_predict) ||
|
||||
stop_pos != std::string::npos));
|
||||
|
||||
if (slot.params.n_probs > 0)
|
||||
if (params.n_probs > 0)
|
||||
{
|
||||
slot.generated_token_probs.push_back(result);
|
||||
}
|
||||
@ -1013,15 +1092,16 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf("usage: %s [options]\n", argv0);
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
@ -1166,6 +1246,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
params.n_threads = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "--threads-batch" || arg == "-tb")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "-b" || arg == "--batch-size")
|
||||
{
|
||||
if (++i >= argc)
|
||||
@ -1343,35 +1432,35 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
|
||||
static json format_generation_settings(llama_server_context &llama, llama_client_slot* &slot)
|
||||
{
|
||||
const auto eos_bias = slot->params.logit_bias.find(llama_token_eos(llama.ctx));
|
||||
const bool ignore_eos = eos_bias != slot->params.logit_bias.end() &&
|
||||
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
|
||||
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
|
||||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||
|
||||
return json{
|
||||
{"n_ctx", llama.n_ctx},
|
||||
{"model", llama.params.model_alias},
|
||||
{"seed", slot->params.seed},
|
||||
{"temp", slot->params.temp},
|
||||
{"top_k", slot->params.top_k},
|
||||
{"top_p", slot->params.top_p},
|
||||
{"tfs_z", slot->params.tfs_z},
|
||||
{"typical_p", slot->params.typical_p},
|
||||
{"repeat_last_n", slot->params.repeat_last_n},
|
||||
{"repeat_penalty", slot->params.repeat_penalty},
|
||||
{"presence_penalty",slot->params.presence_penalty},
|
||||
{"frequency_penalty", slot->params.frequency_penalty},
|
||||
{"mirostat", slot->params.mirostat},
|
||||
{"mirostat_tau", slot->params.mirostat_tau},
|
||||
{"mirostat_eta", slot->params.mirostat_eta},
|
||||
{"penalize_nl", slot->params.penalize_nl},
|
||||
{"stop", slot->params.antiprompt},
|
||||
{"n_predict", slot->params.n_predict},
|
||||
// {"n_keep", slot.params.n_keep},
|
||||
{"seed", llama.params.seed},
|
||||
{"temp", llama.params.temp},
|
||||
{"top_k", llama.params.top_k},
|
||||
{"top_p", llama.params.top_p},
|
||||
{"tfs_z", llama.params.tfs_z},
|
||||
{"typical_p", llama.params.typical_p},
|
||||
{"repeat_last_n", llama.params.repeat_last_n},
|
||||
{"repeat_penalty", llama.params.repeat_penalty},
|
||||
{"presence_penalty", llama.params.presence_penalty},
|
||||
{"frequency_penalty", llama.params.frequency_penalty},
|
||||
{"mirostat", llama.params.mirostat},
|
||||
{"mirostat_tau", llama.params.mirostat_tau},
|
||||
{"mirostat_eta", llama.params.mirostat_eta},
|
||||
{"penalize_nl", llama.params.penalize_nl},
|
||||
{"stop", llama.params.antiprompt},
|
||||
{"n_predict", llama.params.n_predict},
|
||||
{"n_keep", llama.params.n_keep},
|
||||
{"ignore_eos", ignore_eos},
|
||||
{"stream", slot->params.stream},
|
||||
{"logit_bias", slot->params.logit_bias},
|
||||
{"n_probs", slot->params.n_probs},
|
||||
{"grammar", slot->params.grammar},
|
||||
{"stream", llama.stream},
|
||||
{"logit_bias", llama.params.logit_bias},
|
||||
{"n_probs", llama.params.n_probs},
|
||||
{"grammar", llama.params.grammar},
|
||||
};
|
||||
}
|
||||
|
||||
@ -1419,7 +1508,7 @@ static json format_final_response(llama_server_context &llama, llama_client_slot
|
||||
// {"timings", format_timings(llama)},
|
||||
};
|
||||
|
||||
if (slot->params.n_probs > 0)
|
||||
if (llama.params.n_probs > 0)
|
||||
{
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
@ -1436,7 +1525,7 @@ static json format_partial_response(
|
||||
{ "slot_id", slot->id }
|
||||
};
|
||||
|
||||
if (slot->params.n_probs > 0)
|
||||
if (llama.params.n_probs > 0)
|
||||
{
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
@ -1467,27 +1556,27 @@ static T json_value(const json &body, const std::string &key, const T &default_v
|
||||
|
||||
static void parse_options_completion(const json &body, llama_client_slot* &slot, llama_server_context &llama)
|
||||
{
|
||||
slot_params default_params;
|
||||
gpt_params default_params;
|
||||
|
||||
slot->params.stream = json_value(body, "stream", false);
|
||||
slot->params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
||||
slot->params.top_k = json_value(body, "top_k", default_params.top_k);
|
||||
slot->params.top_p = json_value(body, "top_p", default_params.top_p);
|
||||
slot->params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
|
||||
slot->params.typical_p = json_value(body, "typical_p", default_params.typical_p);
|
||||
slot->params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
|
||||
slot->params.temp = json_value(body, "temperature", default_params.temp);
|
||||
slot->params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
|
||||
slot->params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
|
||||
slot->params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
|
||||
slot->params.mirostat = json_value(body, "mirostat", default_params.mirostat);
|
||||
slot->params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
|
||||
slot->params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
|
||||
slot->params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
|
||||
//llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
||||
slot->params.seed = json_value(body, "seed", default_params.seed);
|
||||
slot->params.grammar = json_value(body, "grammar", default_params.grammar);
|
||||
slot->params.n_probs = json_value(body, "n_probs", default_params.n_probs);
|
||||
llama.stream = json_value(body, "stream", false);
|
||||
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
||||
llama.params.top_k = json_value(body, "top_k", default_params.top_k);
|
||||
llama.params.top_p = json_value(body, "top_p", default_params.top_p);
|
||||
llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
|
||||
llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
|
||||
llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
|
||||
llama.params.temp = json_value(body, "temperature", default_params.temp);
|
||||
llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
|
||||
llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
|
||||
llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
|
||||
llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
|
||||
llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
|
||||
llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
|
||||
llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
|
||||
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
||||
llama.params.seed = json_value(body, "seed", default_params.seed);
|
||||
llama.params.grammar = json_value(body, "grammar", default_params.grammar);
|
||||
llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
|
||||
|
||||
if (body.count("prompt") != 0)
|
||||
{
|
||||
@ -1498,10 +1587,10 @@ static void parse_options_completion(const json &body, llama_client_slot* &slot,
|
||||
slot->prompt = "";
|
||||
}
|
||||
|
||||
slot->params.logit_bias.clear();
|
||||
llama.params.logit_bias.clear();
|
||||
if (json_value(body, "ignore_eos", false))
|
||||
{
|
||||
slot->params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
const auto &logit_bias = body.find("logit_bias");
|
||||
@ -1517,11 +1606,11 @@ static void parse_options_completion(const json &body, llama_client_slot* &slot,
|
||||
{
|
||||
if (el[1].is_number())
|
||||
{
|
||||
slot->params.logit_bias[tok] = el[1].get<float>();
|
||||
llama.params.logit_bias[tok] = el[1].get<float>();
|
||||
}
|
||||
else if (el[1].is_boolean() && !el[1].get<bool>())
|
||||
{
|
||||
slot->params.logit_bias[tok] = -INFINITY;
|
||||
llama.params.logit_bias[tok] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1541,6 +1630,8 @@ static void parse_options_completion(const json &body, llama_client_slot* &slot,
|
||||
}
|
||||
}
|
||||
|
||||
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar);
|
||||
|
||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama, slot));
|
||||
}
|
||||
|
||||
@ -1774,11 +1865,11 @@ int main(int argc, char **argv)
|
||||
// }
|
||||
// }
|
||||
|
||||
// auto probs = llama.generated_token_probs;
|
||||
// if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
// const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
// probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
// }
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
|
||||
// const json data = format_final_response(llama, llama.generated_text, probs);
|
||||
|
||||
@ -1796,32 +1887,70 @@ int main(int argc, char **argv)
|
||||
// const completion_token_output token = slot->next();
|
||||
// std::string token_str = llama_token_to_piece(llama.ctx, token.tok);
|
||||
|
||||
// std::vector<completion_token_output> probs_output = {};
|
||||
size_t pos = std::min(sent_count, llama.generated_text.size());
|
||||
|
||||
// const json data = format_partial_response(llama, slot, token_str, probs_output);
|
||||
// const std::string str =
|
||||
// "data: " +
|
||||
// data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
// "\n\n";
|
||||
const std::string str_test = llama.generated_text.substr(pos);
|
||||
bool is_stop_full = false;
|
||||
size_t stop_pos =
|
||||
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||
if (stop_pos != std::string::npos) {
|
||||
is_stop_full = true;
|
||||
llama.generated_text.erase(
|
||||
llama.generated_text.begin() + pos + stop_pos,
|
||||
llama.generated_text.end());
|
||||
pos = std::min(sent_count, llama.generated_text.size());
|
||||
} else {
|
||||
is_stop_full = false;
|
||||
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||
STOP_PARTIAL);
|
||||
}
|
||||
|
||||
// LOG_VERBOSE("data stream", {
|
||||
// { "to_send", str }
|
||||
// });
|
||||
// if(!sink.write(str.c_str(), str.size())) {
|
||||
// slot->release();
|
||||
// return false;
|
||||
// }
|
||||
} else {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
||||
if (
|
||||
stop_pos == std::string::npos ||
|
||||
// Send rest of the text if we are at the end of the generation
|
||||
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
|
||||
) {
|
||||
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
|
||||
|
||||
sent_count += to_send.size();
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
if (probs_pos < probs_stop_pos) {
|
||||
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||
}
|
||||
sent_token_probs_index = probs_stop_pos;
|
||||
}
|
||||
|
||||
const json data = format_partial_response(llama, to_send, probs_output);
|
||||
|
||||
const std::string str =
|
||||
"data: " +
|
||||
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
|
||||
LOG_VERBOSE("data stream", {
|
||||
{ "to_send", str }
|
||||
});
|
||||
|
||||
if (!sink.write(str.data(), str.size())) {
|
||||
LOG_VERBOSE("stream closed", {});
|
||||
llama_print_timings(llama.ctx);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// const json data = format_final_response(
|
||||
// llama, slot,
|
||||
// "",
|
||||
// std::vector<completion_token_output>(
|
||||
// slot->generated_token_probs.begin(),
|
||||
// slot->generated_token_probs.begin() + sent_token_probs_index)
|
||||
// );
|
||||
|
||||
if (!llama.has_next_token) {
|
||||
// Generation is done, send extra information.
|
||||
const json data = format_final_response(
|
||||
llama,
|
||||
"",
|
||||
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||
);
|
||||
|
||||
// const std::string str =
|
||||
// "data: " +
|
||||
@ -1907,15 +2036,15 @@ int main(int argc, char **argv)
|
||||
|
||||
// std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
// if (llama.params.n_probs > 0) {
|
||||
// const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
// size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
// size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
// if (probs_pos < probs_stop_pos) {
|
||||
// probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||
// }
|
||||
// sent_token_probs_index = probs_stop_pos;
|
||||
// }
|
||||
if (llama.params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
if (probs_pos < probs_stop_pos) {
|
||||
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||
}
|
||||
sent_token_probs_index = probs_stop_pos;
|
||||
}
|
||||
|
||||
// const json data = format_partial_response(llama, to_send, probs_output);
|
||||
|
||||
|
@ -125,6 +125,8 @@ int main(int argc, char ** argv) {
|
||||
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
@ -134,7 +136,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (true) {
|
||||
// sample from the target model
|
||||
llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
|
||||
llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
@ -211,7 +213,13 @@ int main(int argc, char ** argv) {
|
||||
if (grammar_dft) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
}
|
||||
grammar_dft = llama_grammar_copy(grammar_tgt);
|
||||
// Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
||||
// that will need to change.
|
||||
auto it = ctx_sampling.sequence_contexts.find(0);
|
||||
GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
||||
// This is necessary because each sequence id in sequence_contexts
|
||||
// uses a copy of the original grammar.
|
||||
grammar_dft = llama_grammar_copy(it->second.grammar);
|
||||
|
||||
LOG("copied target grammar to draft grammar\n");
|
||||
}
|
||||
|
2
ggml.c
2
ggml.c
@ -14428,7 +14428,7 @@ static void ggml_compute_forward_conv_2d_f16_f32(
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
93
prompts/mnemonics.txt
Normal file
93
prompts/mnemonics.txt
Normal file
@ -0,0 +1,93 @@
|
||||
For each kanji character, write a Markdown‐formatted mnemonic that uses its keyword and the keyword of all its components.
|
||||
|
||||
Kanji: 欠 (lack of)
|
||||
Components: 𠂊 (hook claw), 人 (person)
|
||||
Mnemonic: This **person** is a pirate. He lost his hand to a crocodile many years ago. Nowadays, the ***lack of*** a hand does not bother him too much. In fact, the **hook claw** that replaces it is the mark of a true pirate, so he is quite proud of it!
|
||||
|
||||
Kanji: 類 (kind (of something))
|
||||
Components: 米 (rice), 大 (large), 頁 (page)
|
||||
Mnemonic: The waiter at a Chinese restaurant hands you a **large** menu. Each **page** has all ***kinds*** of **rice** on offer!
|
||||
|
||||
Kanji: 燃 (burn)
|
||||
Components: 火 (fire), 然 (sort of thing)
|
||||
Mnemonic: ***Burning*** things up with **fire** is just my **sort of thing**. (Spoken like a true pyromaniac.)
|
||||
|
||||
Kanji: 頂 (top of)
|
||||
Components: 丁 (street), 頁 (page)
|
||||
Mnemonic: To be at the ***top of*** your game, you need both practical knowledge (**street** smarts) and theoretical knowledge (having read many **pages**).
|
||||
|
||||
Kanji: 険 (risky and steep)
|
||||
Components: 阝 (small village), 㑒 (consensus)
|
||||
Mnemonic: Everyone agrees (there is **consensus**) that the path to the **small village** is ***risky and steep***.
|
||||
|
||||
Kanji: 困 (distressed)
|
||||
Components: 囗 (closed box), 木 (tree)
|
||||
Mnemonic: You would feel ***distressed*** too if you were a **tree** trapped in a **closed box**! I have no place to grow!
|
||||
|
||||
Kanji: 頭 (head)
|
||||
Components: 豆 (bean), 頁 (page)
|
||||
Mnemonic: What do you have in that ***head*** of yours? A **bean** for a brain? Go read more **pages** and become more knowledgeable about the world!
|
||||
|
||||
Kanji: 確 (certain)
|
||||
Components: 石 (stone), 冖 (roof without a chimney), 隹 (old bird)
|
||||
Mnemonic: An **old bird** has made a nest on your **roof**. What do you do? You call Misaka from a <cite>A ***Certain*** Scientific Railgun</cite> to get rid of it, of course! But she doesn’t really want to vaporize the poor thing, so she just throws a **stone** to scare it away. (What was the point of calling her, then‽)
|
||||
|
||||
Kanji: 魚 (fish)
|
||||
Components: 𠂊 (hook claw), 田 (rice field), 灬 (fire sparks)
|
||||
Mnemonic: Catch ***fish*** with a **hook**, collect rice from the **rice field**, cook them with **fire**… And my meal is ready!
|
||||
|
||||
Kanji: 警 (to police (something))
|
||||
Components: 敬 (respect), 言 (say)
|
||||
Mnemonic: ***To police something*** is to make people **respect** what the law **says**.
|
||||
|
||||
Kanji: 筆 (writing brush)
|
||||
Components: 竹 (bamboo), 聿 (brush)
|
||||
Mnemonic: A traditional ***writing brush*** is a **brush** made of **bamboo**.
|
||||
|
||||
Kanji: 獄 (prison)
|
||||
Components: 犭 (animal), 言 (say), 犬 (dog)
|
||||
Mnemonic: In ***prison***, like in the **animal** kingdom, only the toughest survive. You have to watch what you **say**. It’s a **dog**‐eat‐dog world.
|
||||
|
||||
Kanji: 新 (new)
|
||||
Components: 立 (standing up), 木 (tree), 斤 (axe)
|
||||
Mnemonic: In order for a ***new*** construction to be made, an empty lot is needed. If there are any **trees** **standing up**, they must be cut down with an **axe**.
|
||||
|
||||
Kanji: 怪 (suspicious)
|
||||
Components: 忄 (weak heart), 圣 (sacred)
|
||||
Mnemonic: That painting of the **Sacred** **Heart** of Jesus looks ***suspicious***. I think it might be a forgery.
|
||||
|
||||
Kanji: 温 (warm (to the touch))
|
||||
Components: 氵 (water drops), 日 (sun), 皿 (dish)
|
||||
Mnemonic: If you leave **water** on a **dish** in the **sun**, it will get ***warm***.
|
||||
|
||||
Kanji: 階 (floor (of a building))
|
||||
Components: 阝 (small village), 皆 (all)
|
||||
Mnemonic: It might be a **small village**, but, despite that, **all** of its buildings have many ***floors***. It’s a village of skyscrapers!
|
||||
|
||||
Kanji: 多 (many)
|
||||
Components: 夕 (evening (before sunset)), 夕 (evening (before sunset))
|
||||
Mnemonic: Two **evenings** in a day would be one too ***many***.
|
||||
|
||||
Kanji: 別 (separate)
|
||||
Components: 口 (mouth), 万 (ten thousand), 刂 (knife)
|
||||
Mnemonic: Tom Six is at it again. For his next flick, he wants to stitch together **ten thousand** people, **mouth**‐to‐anus. One of the most graphic and disturbing scenes will feature one of the victims using a **knife** to ***separate*** perself.
|
||||
|
||||
Kanji: 並 (line up)
|
||||
Components: 䒑 (antlers on a wall), 业 (runway)
|
||||
Mnemonic: In order to land a plane you have to ***line up*** properly with the **runway**. The things that look like **antlers** at the end of the runway are the control towers; you should follow their instructions.
|
||||
|
||||
Kanji: 姿 (figure)
|
||||
Components: 次 (next), 女 (woman)
|
||||
Mnemonic: The **next** **woman** that I date will have a perfect **figure**. Because I’m done with 3D women—it will *literally* be an anime figure!
|
||||
|
||||
Kanji: 実 (real)
|
||||
Components: 宀 (roof with a chimney), 𡗗 (three people)
|
||||
Mnemonic: Living under a **roof with a chimney** with **three people** (a wife and two children)—a happy family life—is not something I could have ever imagined. It does not feel ***real***.
|
||||
|
||||
Kanji: 謝 (apologize)
|
||||
Components: 言 (say), 射 (shoot)
|
||||
Mnemonic: **Shot** first, ***apologize*** (**say** you are sorry) later.
|
||||
|
||||
Kanji: 提 (propose)
|
||||
Components: 扌 (left hand), 是 (go with)
|
||||
Mnemonic:
|
Loading…
Reference in New Issue
Block a user