mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 03:31:46 +00:00
Fix conversion of unnormalized BF16->BF16 weights (#7843)
* add truncate_bf16 * truncate intermediate fp32 if converting bf16 to bf16 * fix masking in __compute_fp32_to_bf16 * np.int16 no longer used * missing cast and additional numpy 2.x fix * ggml-impl : do not flush bf16 subnormals to zero * ggml : add reference fp32 to bf16 conversion The fast version is no longer equivalent for all platforms because of the handling of subnormal values. * gguf-py : remove flush to zero for bf16 subnormals * gguf-py : remove float32 truncation to bf16 Rounding achieves the same thing in the cases where this was used. * missed prototype update in merge * merge cleanup --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
This commit is contained in:
parent
e09a800f9a
commit
b72c20b85c
@ -316,7 +316,7 @@ class Model:
|
|||||||
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
||||||
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
||||||
data = gguf.quantize_bf16(data)
|
data = gguf.quantize_bf16(data)
|
||||||
assert data.dtype == np.int16
|
assert data.dtype == np.uint16
|
||||||
data_qtype = gguf.GGMLQuantizationType.BF16
|
data_qtype = gguf.GGMLQuantizationType.BF16
|
||||||
|
|
||||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
|
||||||
|
@ -349,6 +349,7 @@ extern "C" {
|
|||||||
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
||||||
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
||||||
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
||||||
|
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
|
||||||
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
||||||
|
|
||||||
struct ggml_object;
|
struct ggml_object;
|
||||||
|
@ -80,8 +80,9 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
|||||||
/**
|
/**
|
||||||
* Converts float32 to brain16.
|
* Converts float32 to brain16.
|
||||||
*
|
*
|
||||||
* This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
|
* This is binary identical with Google Brain float conversion.
|
||||||
* Subnormals shall be flushed to zero, and NANs will be quiet.
|
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||||
|
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||||
* This code should vectorize nicely if using modern compilers.
|
* This code should vectorize nicely if using modern compilers.
|
||||||
*/
|
*/
|
||||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||||
@ -95,10 +96,6 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
|||||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||||
return h;
|
return h;
|
||||||
}
|
}
|
||||||
if (!(u.i & 0x7f800000)) { /* subnormal */
|
|
||||||
h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
|
|
||||||
return h;
|
|
||||||
}
|
|
||||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||||
return h;
|
return h;
|
||||||
}
|
}
|
||||||
|
@ -480,9 +480,16 @@ void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
y[i] = ggml_compute_fp32_to_bf16(x[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
|
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||||
int i = 0;
|
int i = 0;
|
||||||
#if defined(__AVX512BF16__)
|
#if defined(__AVX512BF16__)
|
||||||
|
// subnormals are flushed to zero on this platform
|
||||||
for (; i + 32 <= n; i += 32) {
|
for (; i + 32 <= n; i += 32) {
|
||||||
_mm512_storeu_si512(
|
_mm512_storeu_si512(
|
||||||
(__m512i *)(y + i),
|
(__m512i *)(y + i),
|
||||||
@ -962,7 +969,7 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
|||||||
.is_quantized = false,
|
.is_quantized = false,
|
||||||
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
|
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
|
||||||
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
||||||
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
|
||||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
|
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
|
||||||
.vec_dot_type = GGML_TYPE_BF16,
|
.vec_dot_type = GGML_TYPE_BF16,
|
||||||
.nrows = 1,
|
.nrows = 1,
|
||||||
@ -20650,7 +20657,7 @@ size_t ggml_quantize_chunk(
|
|||||||
case GGML_TYPE_BF16:
|
case GGML_TYPE_BF16:
|
||||||
{
|
{
|
||||||
size_t elemsize = sizeof(ggml_bf16_t);
|
size_t elemsize = sizeof(ggml_bf16_t);
|
||||||
ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
|
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
|
||||||
result = n * elemsize;
|
result = n * elemsize;
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_F32:
|
case GGML_TYPE_F32:
|
||||||
|
@ -25,14 +25,12 @@ def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizati
|
|||||||
|
|
||||||
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
||||||
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
|
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
|
||||||
n = n.astype(np.float32, copy=False).view(np.int32)
|
n = n.astype(np.float32, copy=False).view(np.uint32)
|
||||||
# force nan to quiet
|
# force nan to quiet
|
||||||
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n)
|
||||||
# flush subnormals to zero
|
|
||||||
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
|
||||||
# round to nearest even
|
# round to nearest even
|
||||||
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16
|
||||||
return n.astype(np.int16)
|
return n.astype(np.uint16)
|
||||||
|
|
||||||
|
|
||||||
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
|
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
|
||||||
@ -49,10 +47,10 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.
|
|||||||
|
|
||||||
|
|
||||||
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
|
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
|
||||||
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
|
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.uint16, oshape=n.shape)
|
||||||
|
|
||||||
|
|
||||||
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
|
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.uint16)
|
||||||
|
|
||||||
|
|
||||||
def quantize_bf16(n: np.ndarray):
|
def quantize_bf16(n: np.ndarray):
|
||||||
|
Loading…
Reference in New Issue
Block a user