gguf-py : fix and simplify quantized shape round-trip (#7483)

* gguf-py : fix and simplify quantized shape round-trip

* gguf-py : remove unused import
This commit is contained in:
compilade 2024-05-24 21:11:48 -04:00 committed by GitHub
parent d041d2ceaa
commit b83bab15a5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 27 additions and 14 deletions

View File

@ -313,11 +313,10 @@ class Model:
data = data.astype(np.float32) data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32 data_qtype = gguf.GGMLQuantizationType.F32
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype] shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
# reverse shape to make it similar to the internal ggml dimension order # reverse shape to make it similar to the internal ggml dimension order
shape_str = f"""{{{', '.join(str(n) for n in reversed( shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
)}}}"""
# n_dims is implicit in the shape # n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")

View File

@ -12,6 +12,8 @@ from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np import numpy as np
import numpy.typing as npt import numpy.typing as npt
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__": if __name__ == "__main__":
import sys import sys
from pathlib import Path from pathlib import Path
@ -251,6 +253,7 @@ class GGUFReader:
tensor_names.add(tensor_name) tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0]) ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims)) n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type] block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0]) data_offs = int(start_offs + offset_tensor[0])
@ -279,6 +282,7 @@ class GGUFReader:
else: else:
item_count = n_bytes item_count = n_bytes
item_type = np.uint8 item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor( tensors.append(ReaderTensor(
name = tensor_name, name = tensor_name,
tensor_type = ggml_type, tensor_type = ggml_type,
@ -286,7 +290,7 @@ class GGUFReader:
n_elements = n_elems, n_elements = n_elems,
n_bytes = n_bytes, n_bytes = n_bytes,
data_offset = data_offs, data_offset = data_offs,
data = self._get(data_offs, item_type, item_count), data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field, field = field,
)) ))
self.tensors = tensors self.tensors = tensors

View File

@ -13,7 +13,6 @@ from string import ascii_letters, digits
import numpy as np import numpy as np
from .constants import ( from .constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT, GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC, GGUF_MAGIC,
GGUF_VERSION, GGUF_VERSION,
@ -26,6 +25,8 @@ from .constants import (
TokenType, TokenType,
) )
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -229,10 +230,7 @@ class GGUFWriter:
else: else:
dtype = raw_dtype dtype = raw_dtype
if tensor_dtype == np.uint8: if tensor_dtype == np.uint8:
block_size, type_size = GGML_QUANT_SIZES[raw_dtype] tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
if tensor_shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
n_dims = len(tensor_shape) n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims) self.ti_data += self._pack("I", n_dims)
for i in range(n_dims): for i in range(n_dims):

View File

@ -1,5 +1,5 @@
from __future__ import annotations from __future__ import annotations
from typing import Callable from typing import Callable, Sequence
from numpy.typing import DTypeLike from numpy.typing import DTypeLike
@ -9,6 +9,20 @@ from .lazy import LazyNumpyTensor
import numpy as np import numpy as np
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32) n = n.astype(np.float32, copy=False).view(np.int32)

View File

@ -118,9 +118,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
for tensor in reader.tensors: for tensor in reader.tensors:
total_bytes += tensor.n_bytes total_bytes += tensor.n_bytes
# Dimensions are written in reverse order, so flip them first writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
shape = np.flipud(tensor.shape).tolist()
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True) bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)